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Abstract

Instrumental variable models with repeated endogenous treatments are popular in

empirical research. This paper shows that if treatment effect dynamics is present and

external instruments are serially correlated, the current empirical approaches adopted

in the literature is invalid. Using the proposed new model and semi-parametric ap-

proach, we find strong evidence of path-dependency in the contemporaneous impact

of increased Chinese import competition on U.S. manufacturing employment. Specif-

ically, the trade shock an industry received over 1991-1999 monotonically magnifies

the negative impact of the 1999-2011 trade shock. The magnifying effect is mild ini-

tially but soars after the 1991-1999 import exposure passes certain threshold.

1 Introduction

The setting of repeated endogenous treatments with varying-intensity and serially corre-

lated external instrumental variables (IV) is popular in applied economics. For example,

Autor et al. (2013) and Acemoglu et al. (2016), seminal papers on the nexus between

international trade and labor economics, use a two-period panel (1991-1999 and 1999-

2011) to assess the repeated endogenous treatments of exposure to rising Chinese import

competition across US local labor markets and industries. Stacking data from the four
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Census years, Boustan (2010) investigates white departures in northern cities in response

to large black migration from the rural South to northern cities between 1940 and 1970.

More recently, Burchardi et al. (2020) investigate the impact of the staggered arrival of

immigrants on innovation using a seven-period, county-level panel model between 1975

and 2010. Numerous other empirical studies have adopted a similar setting.

Despite its popularity in empirical research, the econometrics literature studying ef-

fects of repeated varying-intensity endogenous treatments, with external instruments, is

sparse. As a result, applied researchers with such a setting have so far adopted a vanilla

first-difference instrumental variable (IV) approach as the main workhorse. The ap-

proach, following the seminal work of Autor et al. (2013), eliminates fixed effects through

first-difference and then solves any remaining endogeneity issues using external instru-

ments proposed from the empirical institutional background. We argue in this paper that

the existing approach can be restrictive in many empirical settings because its model over-

looks the repeated feature of treatments (after first-differencing). In fact, the first con-

tribution of our paper is to formally show that the existing empirical approach adopted

in many empirical research suffers from a contradiction between the exclusion restriction

and the rank condition and is, therefore, invalid, if external instruments are serially cor-

related and there exist nontrivial treatment effect dynamics in the outcome equation.

Motivated by the inconsistency result, we propose in this paper a novel model that al-

lows 1) the effect of the current treatment to vary with treatment history and 2) the treat-

ment in the previous period to directly affect the contemporaneous outcome. The new

features we propose are relevant to many empirical applications. Take China syndrome

as an example. As is documented in Autor et al. (2021), the China trade shock which

commenced in the early 1990s has persisted through three distinct periods: the gradual

beginning of China’s export boom during the 1990s; the dramatic surge of China’s ex-

port growth during the 2000s after its WTO accession; and China’s export plateau after

2010. Across industries, the path of trade shock growth over time differs dramatically

as there has been a natural shift in export composition in China following the growth of

the Chinese economy. As a result, it is natural to expect that the impact of the China

trade shock in a later period depends on trade shocks in previous periods. For instance,

a certain industry hit hard by the China trade shock during an earlier period may un-
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dergo structural transformation, enabling it to have better capabilities to cope with im-

port competition in the latter period. Our model is the first in the literature that can be

used to explore such an important path-dependency feature in China shock effects.

Our new model, together with proposed semi-parametric identification and estima-

tion strategy, uncover rich dynamics of the China trade shock not described previously

in the literature (see, e.g., Autor et al., 2013, 2014; Acemoglu et al., 2016; Autor et al.,

2020b,a; Feenstra et al., 2019, among many others). We find strong evidence using the

industry-level dataset in Acemoglu et al. (2016) that the contemporaneous impact of in-

creased Chinese imports on employment in 1999-2011 depends on the import exposure

in 1991-1999. The path-dependency in the “China Syndrome” is monotonic, too, with

the previous import exposure magnifying the negative impact of the current trade shock.

More interestingly, we find that the size of the magnifying effect is mild for most indus-

tries, but becomes much larger when the import exposure increase is over 0.2 percentage

points per year between 1991 and 1999. Specifically, the China shock effect in the 2000s

is stable and averages to -0.25 when the import exposure change in the 1990s lies be-

tween 0 and 0.2, whereas the effects increases to an average of -1.0 when the change lies

between 0.2 and 0.3. The substantially bigger contemporaneous effect estimates for in-

dustries exposed to larger earlier shocks underscore the importance of path-dependency

in analyzing trade effects. Our new empirical results thus shed new light on the China

shock literature by estimating a non-linear, path-dependent treatment effect, which can-

not be captured in the existing empirical framework.

In the econometrics literature, our proposed model is related to the dynamic treat-

ment effect literature, although the earlier literature has been mostly focusing on binary

treatments. Heckman and Navarro (2007) and Heckman et al. (2016) establish impor-

tant dynamic treatment effect concepts including the direct effect and continuation val-

ues, and propose a decomposition of the total longer-term effect of treatment interven-

tions. Han (2021) offers nonparametric identification for average treatment effects as well

as optimal treatment regimes. Bojinov et al. (2021) study the identification and finite

population inference of dynamic treatment effects under sequential randomization or un-

confoundedness. Cellini et al. (2010) study the identification of longer-term direct effects

for the repeated regression discontinuity setting. Hsu and Shen (2023) formalize and ex-
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tend the identification approach to allow for treatment effect heterogeneity. Gallen et al.

(2023) extend Cellini et al. (2010) to study a repeated binary endogenous treatment set-

ting where only a single time-invariant external treatment is available. In this paper, our

focus is on the evaluation of repeated varying-intensity treatments, a model setting that

is different from all the above-mentioned studies.

Our paper also contributes to the panel IV regression literature by introducing an out-

come equation that offers more flexible modeling of effects from the time-varying continu-

ous endogenous regressor. We rely on the presence of external instruments for model iden-

tification since, in a lot of empirical settings, the sequential exogeneity condition required

for using internal instruments is not suitable. Our proposed method is, therefore, dis-

tinguished from the vast literature that uses internal instruments for panel IV identifica-

tion, including Anderson and Hsiao (1982), Arellano and Bond (1991), Ahn and Schmidt

(1995), and many others. For semi-parametric estimation, we propose a local polynomial

conditional GMM estimator that is related to but different from the estimation approach

introduced in the previous literature, including Bravo (2023), Cai and Li (2008), and Su

et al. (2013), among many others. The difference is due to the formulation of our condi-

tional moment equality, where the unknown varying coefficient of interest is a function of

the endogenous regressor of the previous period. Later in Section 2.1, we detail how this

setting naturally arises when studying treatment effects in a dynamic panel structure.

The paper is organized as the following. Section 2 motivates our novel model with

direct carryover effect and path-dependent contemporaneous effect both empirically and

theoretically. The section also presents parametric identification of the proposed model

and shows its limitation. Section 3 studies semi-parametric identification of the proposed

model and discusses various extensions of the benchmark model. Section 4 proposes rel-

evant semi-parametric estimation and inference methods. Section 5 applies the proposed

method to the industry-level dataset from Acemoglu et al. (2016), finding that the level

of Chinese import in the previous period magnifies the contemporaneous impact of Chi-

nese import on the US manufacturing employment. Appendices of the paper includes

Monte Carlo simulation results, robustness checks for the empirical analysis, as well as

all mathematical proofs of theoretical results.
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2 Model and Motivation

2.1 Model Setup

Consider a series of repeated treatments {Xit}Tt=1 for individual i = 1, . . . , N . Treatments

start at t = 1 so Xit = 0 for any t ≤ 0. Treatments are of variable intensity and

potentially endogenous with respect to the series of outcomes {Yit}Tt=1. The identification

of treatment effects relies on the presence of external instruments, denoted by {Zit}Tt=1.

Both Xit and Yit are scalar random variables, while Zit is of dimension dzt. To model

an outcome equation, we also consider a dht-dimensional vector of control variables Hit.

Without loss of generality, let Hit = (1 H̃ ′
it)

′ so our model always includes an intercept.

This repeated treatment setting is popular in applied economics. For example, Autor

et al. (2013) and Acemoglu et al. (2016), seminal papers in the intersection between

international trade and labor economics, investigate the effect of rising Chinese import

competition on US local labor markets and industries using a two-period panel model

(1991-1999 and 1999-2011). The endogenous treatment of interest is the change in local

labor market (or industry) exposure to Chinese imports in each time period. Boustan

(2010) studies white departures to the suburbs in northern cities in response to large

black influx from the rural South to northern cities using Census data between 1940 and

1970. The endogenous treatment is the change in the black population within a city

over time. Burchardi et al. (2020) investigate the impact of immigration on innovation

between 1975 and 2010 with five-year intervals using more than a decade of migration

data from foreign countries to US counties. The endogenous treatment in this case is the

number of migrants flowing into the US county in each time interval.

The econometrics literature, as far as the authors know, has not paid much attention

to such an important setting. As a result, empirical studies with repeated endogenous

treatments remain to predominantly use the following overly simple parametric model:

Existing: Yit = βtXit +H ′
itγt + ϵit, t = 1, . . . , T, (2.1)

and estimate it through a standard two-stage least squared (2SLS) regression. As men-

tioned, identification of the model relies on the external instrumental variable Zit that

is correlated with Xit but uncorrelated with ϵit, the error term in (2.1), for each time
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t. In Autor et al. (2013) and Acemoglu et al. (2016), for example, the external instru-

ment is constructed by using imports from China to eight other high-income countries,

excluding the US. The rationale behind using imports from other high-income economies

is that they are similarly exposed to Chinese supply shocks, but are likely to be uncor-

related with US demand shocks.

The model (2.1) is overly simple because it only considers a contemporaneous treat-

ment effect for each t. In the current study, we illustrate the importance of modeling

treatment effect dynamics and show a potential pitfall of the existing approach. Specifi-

cally, we propose the following econometrics model that allows for 1) a direct carryover

effect from the past treatment even when there is no contemporaneous treatment and 2)

a path-dependent contemporaneous treatment effect.

Benchmark: Yit = β1t−1Xi(t−1) + β0t
(
Xi(t−1)

)
Xit +H ′

itγt + εit, t = 1, . . . , T. (2.2)

As will be discussed shortly, this model naturally arises from the potential outcome

framework and can encompass various forms of treatment effect dynamics that may be

considered in practice. The functional parameter β0t (.) is the t-th period contemporaneous

treatment effect which is allowed to vary with the treatment take-up of the previous

period t − 1. As an example, in the context of Autor et al. (2013) and Acemoglu et al.

(2016), β0t (.) allows the impact of the “China trade shock” in the 2000s to vary with

the intensity of the “China trade shock” in the 1990s. This path-dependency in the

contemporaneous treatment effect could arise from several factors. For example, due

to the adverse China trade shock in the previous period, innovation activities might

reduce (Autor et al., 2020c), which further dampens the ability to cope with competitive

pressure from China in the current period. On the contrary, the adverse trade shock in

the previous period might boost innovation to escape from the competition (Bloom et al.,

2016), which results in industry-level structural changes to better manage the trade shock

in the current period.

In the context of Burchardi et al. (2020), the parameter function β0t (.) allows for

the possibility that the contemporaneous impact of the “immigration shock” on innova-

tion varies with the intensity of the “immigration shock” in the previous five-year pe-

riod, possibly through positive externalities from immigrants settled down earlier. For
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instance, the first arrival of immigrants helps later immigrants integrate into the local

society (Battisti et al., 2022), thereby enabling new immigrants to focus on economic ac-

tivities, including innovation. Previous immigrant inventors also positively influence the

innovation production of their collaborators from the same ethnic origin as documented

in Bernstein et al. (2022).

The parameter β1t−1 in model (2.2) is the direct carryover effect of the previous pe-

riod’s treatment. The term “direct” is used following Heckman et al. (2016) to empha-

size that β1t−1 is the carryover effect of Xi(t−1) on Yit when the contemporaneous treat-

ment Xit is zero. The parameter is important for counterfactual policy analysis as dis-

cussed in previous literature, including Heckman et al. (2016) in a multi-stage sequential

treatment decision setting, Cellini et al. (2010) and Hsu and Shen (2023) in a dynamic

regression discontinuity design, and Gallen et al. (2023) in a repeated binary endogenous

treatment setting. The direct carryover effect will be extended to include nonlinearity in

its functional form later in the paper.

In the context of Autor et al. (2013) and Acemoglu et al. (2016), for example, β1t−1

suggests a possibility of staggered impact arising from long-term adjustments in US

manufacturing industries, even after the import growth of Chinese products flattens

out. In the context of Burchardi et al. (2020), the carryover effect captures innovation

activities in the current period by immigrants who arrived in the previous period.

It is worth mentioning that our proposed benchmark model with dynamic treatment

effects arises naturally from a potential outcome perspective. Consider a simple case

with T = 2. Let potential outcomes given treatment intensities x1 and x2 be denoted

by Yi1(x1) and Yi2(x1, x2) such that observed outcomes satisfy Yi1 = Yi1(Xi1) and Yi2 =

Yi2(Xi1, Xi2). LetWit be the vector of time-varying exogenous regressors for each t and Ai

be the vector of time-invariant exogenous regressors including the intercept. Suppose the

potential outcome model has the following additive form and an autoregressive structure.

Yi1(x1) = Yi1(0) + β0i1x1, Yi2(x1, x2) = Yi2(x1, 0) + (Yi2(x1, x2)− Yi2(x1, 0)) ,

where Yi1(0) =W ′
i1γ

w
1 +A′

iγ
a
1 + vi1,

Yi2(x1, 0) = ρYi1(x1) + ηx1 +W ′
i2γ

w
2 +A′

iγ
a
2 + vi2,

Yi2(x1, x2)− Yi2(x1, 0) = β0i2(x1)x2.
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Let β01 = E
[
β0i1
]
and β02(x1) = E

[
β0i2(x1)

]
. The above potential outcome framework

leads to the outcome equation in the benchmark model (2.2) with β11 = ρβ01 + η, Hi1 =

(A′
i W

′
i1)

′, γ1 = ((γa1 )
′ (γw1 )

′)′, Hi2 = (A′
i W

′
i1 W

′
i2)

′, γ2 = ((ργa1 + γa2 )
′ ρ(γw1 )

′ (γw2 )
′)′,

εi1 = vi1+
(
β0i1 − β01

)
x1, and εi2 = ρεi1+ vi2+

(
β0i2(x1)− β02(x1)

)
x2. The autoregressive

nature of the potential outcome Yi2(x1, 0) provides one mechanism of howXi1 could affect

Yi2 even whenXi2 = 0. All other channels of the direct carryover effect are summarized by

the parameter η. In this paper, while it would be an interesting topic of future research,

we do not separate out different channels of the direct carryover effect. Identification

of the direct carryover effect is an important concept in the mediation literature (e.g.,

Flores and Flores-Lagunes, 2009, 2010).

The above potential outcome model allows individual treatment effects to be hetero-

geneous in an arbitrary way. Apparently, randomness in treatment effects needs to be re-

stricted by exclusion restrictions for IV-based identification strategies to operate. More

details about the exclusion restrictions will be discussed in Section 3.

2.2 Caveats of Ignoring Treatment Effect Dynamics

In this section, we delve into the panel setting of interest by discussing potential caveats

with the existing 2SLS approach. For illustration purposes, we temporarily assume that

both the external instrument Zit and the control Hit are scalar-valued. Moreover, for

each i, the instrument Zit is assumed to follow the autoregressive law of motion such that

Zit = α0 + α1Zi(t−1) + eit, (2.3)

where E[eit] = 0 and E[Zi(t−1)eit] = 0 for each i and t. We note that the serial corre-

lation of the instrument Zit is commonly observed in practice. For example, the sample

correlation coefficient between Zi1 and Zi2 is 0.86 where i denotes a region in Autor et al.

(2013); the sample correlation coefficient between Zi1 and Zi2 is 0.63 where i denotes an

industry in Acemoglu et al. (2016). Such high correlations are not surprising; China’s

comparative advantage with the rest of the world had been in labor-intensive industries

and was not likely to have changed drastically from the 1990s to the 2000s.

Let β̂t denote the standard IV estimator based on the existing model (2.1) using Zit

as the external instrument for Xit. The following lemma shows that the estimator is

inconsistent for the contemporaneous effect of Xit on Yit when the external instruments
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are serially correlated and the outcome equation model either 1) has a nontrivial carryover

effect or 2) features nontrivial path-dependency in the contemporaneous effect.

Lemma 2.1 Suppose the contemporaneous exogeneity and standard rank condition hold

for the external instrument Zit such that E[Zitεit] = 0 and cov(Zit, Xit) ̸= 0 for all

t = 1, . . . , T . In addition, E[Xi(t−1)eit] = 0. If the external instrument Zit is serially

correlated, then, for any t ≥ 2, the 2SLS estimator β̂t defined above is

(a) inconsistent for the contemporaneous treatment effect β0t if the true model has a

nontrivial direct carryover effect, i.e.,

Yit = γt + β1t−1Xi(t−1) + β0tXit + εit, β1t−1 ̸= 0. (2.4)

(b) inconsistent for the weighted average contemporaneous treatment effect

β̄0t =

∫
β0t (x)dFXt−1(x),

where FXt−1(.) is the cumulative distribution function of Xi(t−1), if the true model

has a path-dependent contemporaneous effect, i.e.,

Yit = γt + β0t
(
Xi(t−1)

)
Xit + εit, β0t (.) ̸= C for any constant C. (2.5)

The first part of Lemma 2.1 holds because the consistency of β̂t under DGP (2.4)

requires the exclusion restriction such that E[Zit(β
1
t−1(Xi(t−1) − E[Xi(t−1)]) + εit)] =

β1t−1cov(Zit, Xi(t−1)) = 0. Plugging the linear projection of Zit in equation (2.3) and con-

ditions of the lemma, we find that cov(Zit, Xi(t−1)) = cov(α0 +α1Zi(t−1) + eit, Xi(t−1)) =

α1cov(Zi(t−1), Xi(t−1)).
1 Given the nontrivial direct carryover effect (i.e., β1t−1 ̸= 0) and

the serial correlation of Zit (i.e., α1 ̸= 0), a contradiction arises between the exclusion

restriction and the rank condition of period t− 1.2 The second part of the lemma holds

1The condition E[Xi(t−1)eit] = 0 is only a sufficient condition required to ensure that

α1cov(Zi(t−1), Xi(t−1)) does not happen to cancel out with cov(eit, Xi(t−1)).
2It is worth noting that the inconsistency result of β̂t cannot be generalized to the case where there is

no carryover effect (i.e., β1
t−1 = 0 in equation (2.4)) but the outcome shock is correlated with last period’s

treatment (i.e., E[Xi(t−1)εit] ̸= 0). Consider, for example, a DGP where Zi2 = α0 +α1Zi1 + ei2 following

equation (2.3), Xi1 = γ0 + γZZi1 + νi1, and εi2 = νi1 + vi1. If (νi1, vi1) ⊥ (Zi1, ei2), then it is clear that

E[Zi2εi2] = 0 and E[εi2Xi1] ̸= 0 hold simultaneously.
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because for β̂t to be a consistent estimator of β̄0t under DGP (2.5), we need the ex-

clusion restriction E[Zit

(
(β0t (Xi(t−1))− β̄0t )Xit + εit

)
] = E[Zit(β

0
t

(
Xi(t−1))− β̄0t

)
Xit] =

cov
(
ZitXit, β

0
t (Xi(t−1))

)
= 0. The restriction does not hold in general because Zit is cor-

related with Xi(t−1).

As is discussed earlier, the commonly used IV in the China syndrome literature is

highly serially correlated. In addition, there is strong empirical evidence (see Section 5)

that, in the China Syndrome application, the contemporaneous impact of increased Chi-

nese import competition on U.S. manufacturing employment depends on the import ex-

posure of the preceding period. Given the empirical evidence, Lemma 2.1 essentially im-

plies that the current empirical strategy adopted in the China Syndrome literature is in-

valid. A new estimation strategy taking into account treatment effect dynamics, there-

fore, needs to be developed.

Discussions:

The inconsistency results stated above are rooted in the repeated endogenous treat-

ments design and the serial correlation of external instruments. It is hence worthwhile to

differentiate our benchmark model (2.2) from a single treatment setting with effect het-

erogeneity, where the exclusion restriction of the existing 2SLS approach is very likely to

hold. Specifically, consider the following model with cross-sectional observations:

Yi = β0 + βWWi + βX(Wi)Xi + εi,

where Yi, Xi, and Wi are the outcome, endogenous treatment, and exogenous variable,

respectively. In the above, the treatment effect of Xi on Yi is potentially heterogeneous

with respect to covariate Wi. In such a model, the vanilla 2SLS regression of Yi on

Xi instrumented by Zi would provide a valid estimator for the average treatment ef-

fect E[βX(Wi)] if, in addition to E[εiZi] = 0, one also has E[Zi(Wi − E[Wi])] = 0 and

E[Zi(β
X(Wi) − E[βX(Wi)])Xi] = 0. Both conditions would hold if, for example, Zi ⊥

Wi|Xi. In the repeated endogenous treatments design, however, the treatment effect het-

erogeneity relies on the level of the past treatment variable. The last period’s treatment

cannot be uncorrelated with this period’s external instrument as long as the external in-

strument has a nontrivial serial correlation. Lemma 2.1, therefore, implies that treat-
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ment effect dynamics, if potentially present, need to be modeled explicitly when formu-

lating the outcome equation models.

2.3 Parametric Identification

In the appendix, we give formal assumptions for parametric identification of the proposed

benchmark model under the sequential exogeneity condition of external instruments. We

discuss two simple special cases here for the ease of understanding.

When T = 2 and β02(.) = β02 , the benchmark model in (2.2) reduces to

Yi1 = γ1 + β10Xi1 + εi1,

Yi2 = γ2 + β11Xi1 + β02Xi2 + εi2.

The first period could be identified by a 2SLS regression of Yi1 on Xi1 instrumented

by Zi1. The second period could be identified by a 2SLS regression of Yi2 on Xi1 and

Xi2 instrumented by Zi1 and Zi2, assuming sequential exogeneity of Zit.
3 Similarly, if

β02(x) = η2,1 + η2,2x, the benchmark model for t = 2 reduces to

Yi2 = γ2 + β11Xi1 + (η2,1 + η2,2Xi1)Xi2 + εi2,

which could be identified by a 2SLS regression of Yi2 on Xi1, Xi2, and Xi1Xi2 instru-

mented by Zi1, Zi2, and Zi1Zi2.

The above parametric approach can face several obstacles in empirical applications.

First, the parametric 2SLS approach requires functional-form knowledge of the path-

dependent contemporaenous effect β02(.). Second, having a 2SLS regression with multi-

ple endogenous regressors can be demanding in terms of the first-stage rank condition,

especially when the sample size is small, such as in the China syndrome application we

study in Section 5. Third, the parametric 2SLS approach requires the strict exogeneity

of the external instrument, which may not be a good assumption in some empirical ap-

plications when general equilibrium effects are present.

3The second-period model could also be identified by a 2SLS regression of Yi2 on Xi1 and Xi2 in-

strumented by Xi1 and Zi2, assuming sequential exogeneity of endogenous treatment. However, if there

is a feedback effect from Xi1 to the second-period outcome shock or that Xi1 is passively correlated

to εi2 through the serial correlation of outcome shocks, the additional sequential exogeneity condition

E[Xi1εi2] = 0 is not likely to hold.
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In the next section, we explore an alternative semi-parametric identifying strategy

with a novel conditional exclusion restriction. The conditional exclusion restriction only

requires contemporary exogeneity of the external instrument. In addition, the new strat-

egy allows for semi-parametric identification of the proposed model, imposing no assump-

tions on the functional form of the path-dependent treatment effect of interest.

3 Semi-parametric Identification

3.1 Identification With Exogenous Control Vector

We first consider identification assuming the control vector H̃it is exogenous. Let Z̈it =

(ωt(Zit)
′ H ′

it)
′ with some known function ωt(.). Let Xt−1 denote the support of Xi(t−1).

In some applications, Xt−1 may be a particular subset of empirical interests.

Assumption 3.1 (semi-parametric identification) For all t = 1, . . . , T , assume that

(a) (exclusion restriction I) E[εit] = 0 and E[εit|Xi(t−1), Zit, H̃it] = E[εit|Xi(t−1)]. For

t = 1, since Xi0 = 0, the assumption reduces to E[εi1|Zi1, H̃i1] = 0.

(b) (rank condition) E[Z̈it(X
′
it H

′
it)|Xi(t−1) = x] is full rank for all x ∈ Xt−1.

Assumption 3.1.(a) denotes the contemporaneous mean independence between exter-

nal instruments and error terms after conditioning on the last treatment. For a two-

period model, it reduces to E[εi1|Zi1, H̃i1] = 0 and E[εi2|Xi1, Zi2, H̃i2] = E[εi2|Xi1].

As a well-known relationship between unconditional and conditional mean indepen-

dence, Assumption 3.1.(a) is not weaker (nor stronger) than its unconditional counter-

part E[εit|Zit, H̃it] = 0. In applied settings, in fact, conditional mean independence tends

to be regarded as more robust than unconditional independence. For instance, if Xi(t−1)

has impacts on both Zit and εit, then Zit is not unconditionally exogenous with respect

to εit, but the conditional exclusion restriction in Assumption 3.1.(a) can still hold.

Recall that Hit = (1 H̃ ′
it)

′ so the first element of γt is the intercept. Denote the

intercept by γt,1 and let γt,−1 include all the remaining elements of γt except γt,1. Let

gt(x) = γt,1+β
1
t−1x+E[εit|Xi(t−1) = x]. Assumption 3.1.(a) implies that for all x ∈ Xt−1
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and t = 1, . . . , T ,

E
[
Z̈it

(
Yit −

(
gt(x) + β0t (x)Xit + H̃ ′

itγt,−1

))
|Xi(t−1) = x

]
=E

[
Z̈it

(
E
[
εit|Zit, H̃it, Xi(t−1) = x

]
− E

[
εit|Xi(t−1) = x

])
|Xi(t−1) = x

]
= 0.

For t = 1, the above conditional moment equality reduces to a classic unconditional

moment equality such that E
[
Z̈it

(
Yit −

(
β01Xi1 +H ′

i1γ1
))]

= E
[
Z̈i1εi1

]
= 0 since Xi0 =

0 and g1(.) = γ1,1. For all t ≥ 2, the above conditional moment equality implies the

identification of (gt(x) β
0
t (x) γ

′
t,−1)

′, for all x ∈ Xt−1. Whether the conditional moment

equality is just-identified or over-identified depends on the dimension of the function ω(.).

The above identification strategy is not impacted if the proposed model in (2.2) is

generalized to include a nonlinear direct carryover effect and/or path-dependent slopes

of exogenous controls:

Yit = β0t
(
Xi(t−1)

)
Xit +H ′

itγt(Xi(t−1)) + εit, (3.1)

where γt(.) = (β1t−1(.) γ
′
t,−1(.))

′ with the intercept term soaked into the nonlinear carry-

over effect function β1t−1(.), for all t = 1, . . . , T . Under model (3.1), Assumption 3.1.(a)

implies that for all x ∈ Xt−1 and t = 1, . . . , T ,

E
[
Z̈it

(
Yit −

(
gt(x) + β0t (x)Xit + H̃ ′

itγt,−1(x)
))

|Xi(t−1) = x
]
= 0, (3.2)

where gt(x) = β1t−1(x)+E[εit|Xi(t−1) = x]. Again, the conditional moment equality iden-

tifies the path-dependent contemporaneous treatment effect β0t (.) treating the carryover

effect function as a nuisance parameter. However, if one is willing to assume sequential

exogeneity of the endogenous treatment, or that E
[
εit|Xi(t−1)

]
= 0, the function gt(.) in

equation (3.2) reduces to the direct carryover effect function.

3.2 Identification with Potentially Endogenous Additional Controls

Note that Assumption 3.1.(a) requires additional controls in H̃it to be exogenous. The

restriction can be relaxed to the following assumption if we do not pursue separate

identification of effects from these additional controls.

Assumption 3.2 (semi-parametric identification: exclusion restriction II) Assume

that E[εit] = 0, E[εit|Xi(t−1), Zit] = E[εit|Xi(t−1)], and E[H̃it|Xi(t−1), Zit] = E[H̃it|Xi(t−1)],
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for all t = 1, . . . , T . For t = 1, since Xi0 = 0, the assumption reduces to E[εi1|Zi1] = 0

and E[H̃i1|Zi1] = E[H̃it].

Assumption 3.2 allows the control vector H̃it to be endogenous, as long as the external

instrument is mean independent of both H̃it and the error term εit after conditioning on

the past treatment Xi(t−1).

Assumption 3.2 implies that for all x ∈ Xt−1,

E
[
ωt(Zit)

(
Yit −

(
β0t (x)Xit +H ′

itγ̃t(x)
))

|Xi(t−1) = x
]

=E
[
ωt(Zit)εit|Xi(t−1) = x

]
− E

[
ω(Zit)E[εit|Xi(t−1) = x]|Xi(t−1) = x

]
= 0, (3.3)

where γ̃t(x) = γt(x) + E[HitH
′
it|Xi(t−1) = x]−1E[Hitεi|Xi(t−1) = x] for all x ∈ Xt−1.

4

The first equality is explained in the appendix. The second equality holds because

E[εit|Xi(t−1), Zit] = E[εit|Xi(t−1)] by Assumption 3.2.

In addition, Assumption 3.2 implies that for all x ∈ Xt−1

E
[
Hit

(
Yit −

(
β0t (x)Xit +H ′

itγ̃(x)
))

|Xi(t−1) = x
]

=E
[
Hitεit|Xi(t−1) = x

]
− E

[
HitH

′
it|Xi(t−1) = x

]
(γ̃(x)− γ(x)) = 0.

Summing up, Assumption 3.2 implies that

E
[
Z̈it

(
Yit −

(
β0t (x)Xit +H ′

itγ̃t(x)
))

|Xi(t−1) = x
]
= 0. (3.4)

Compared to the identification in the last section in (3.1), allowing H̃it to be endoge-

nous implies that we cannot separately identify its effect on the outcome. However, if the

external instrument used to identify β0t (.) does not move with H̃it conditional on Xi(t−1),

the endogeneity of H̃it does not influence the identification of β0t (.). For identification of

β0t (.) only, there is no need to distinguish whether Assumption 3.1.(a) or Assumption 3.2

is used as the exclusion restriction. In practice, researchers can choose either of them de-

pending on whether the additional control vector in the empirical application is poten-

tially endogenous.

Discussions:

4The definition implies that H ′
it (γ̃t(x)− γt(x)) = H ′

itE[HitH
′
it|Xi(t−1) = x]−1E[Hitεi|Xi(t−1) = x] ≡

L[εi|Xi(t−1) = x, H̃it], the population level linear projection of εi on H̃it conditional on Xi(t−1) = x.
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The identification strategy discussed above can be adapted to the general cross-

sectional setting discussed at the end of Section 2.2. As is discussed there, unlike in the

repeated treatment setting, it is more likely to have Wi and the external instrument Zi

to satisfy certain exclusion conditions such that omitting the direct effect of Wi on Yi

and the heterogeneity in the effect of Xi on Yi is fine. However, if the exclusion condi-

tions detailed at the end of Section 2.2 cannot be argued in some empirical applications,

or researchers are genuinely interested in effect heterogeneity, the identification strategy

discussed in this section could be easily adapted to this cross-sectional setting.

It is worth mentioning that the cross-section extension in discussion also incorporates

the popular fuzzy regression discontinuity (RD) set-up. If we label the binary endogenous

treatment in the RD setting using Ti and let the external instrument be Zi = 1(Wi ≥ c)

where Wi is the endogenous running bvariable and c the RD threshold, we can write

down the fuzzy RD model with covariates (see e.g., Calonico et al., 2019) as

Yi(0) = βW (Wi) + H̃ ′
iγ−1 (Wi) + εi, Yi(1) = Yi(0) + βT (Wi) ,

⇒ Yi = Yi(0)(1− Ti) + Yi(1)Ti = βW (Wi) + βT (Wi)Ti + H̃ ′
iγ−1 (Wi) + εi,

just as the outcome equation stated at the end of Section 2.2.

The identification assumption of fuzzy RD is essentially that, for any w ∈ (c−ϵ, c+ϵ)

with small ϵ > 0, E[εi|Wi = w,Zi] = E[εi|Wi = w] and E[H̃i|Wi = w,Zi] = E[H̃i|Wi =

w], similar to Assumption 3.2. The RD treatment effect βT (c) for compliers at the RD

cutoff c is identified by a conditional moment equality similar to (3.4):

E
[
(Zi H

′
i)
′ (Yi − (βT (w)Ti +H ′

iγ̃(w)
))

|Wi = w
]
= 0,

for w ∈ (c − ϵ, c + ϵ) and any small ϵ > 0, where the nuisance parameter function

γ̃(w) = (βw(w) γ−1(w)
′)′ + E[HiH

′
i|Wi = w]−1E[Hiεi|Wi = w].

4 Semi-parametric Estimation and Inference

This section studies semi-parametric estimation of the path-dependent contemporane-

ous effect function β0t (.) and the functional intercept gt(.). Sections 4.1 and 4.2 discuss

estimation and pointwise inference procedures following the identification result in con-

ditional moment equality (3.2)5, where all slopes of the outcome equation are assumed

5As is discussed earlier, the difference between identification results summarized by equation (3.2) and

equation (3.4) lies only in the interpretation of slope coefficients of additional controls H̃it. Therefore,
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to be functional. Section 4.3 proposes a semi-parametric estimator for the average con-

temporaneous effect β̄0t (.) defined in Lemma 2.1. The proposed average effect estimator

enjoys a parametric rate of convergence. Without loss of generality, we set t = 2 in this

section for the purpose of illustration.

4.1 Estimation of Functional Coefficients

Let θ2(x) = (β02(x) g2(x) γ
′
2,−1(x))

′ collect all parameters of interest. Let Ẍi2 = (X ′
i2 H

′
i2)

′.

The identification result in the previous section, for the case of t = 2, can be summarized

by the following conditional moment equality:

ΛZ̈Y (x)−ΛZ̈Ẍ(x)θ2(x) = 0, (4.1)

whereΛZ̈Y (x) = E[Z̈i2Yi2|Xi1 = x] is a (K+dh2)×1 matrix andΛZ̈Ẍ(x) = E[Z̈i2Ẍ
′
i2|Xi1 =

x] is a (K + dh2)× (1 + dh2) matrix.

Let W(x) be a pre-determined (K+dh2)×(K+dh2) weighting matrix. For all x ∈ X1,

define θ̂2(x) as the solution to

min
θ2(x)

(
Λ̂Z̈Y (x)− Λ̂Z̈Ẍ(x)θ2(x)

)′
W(x)

(
Λ̂Z̈Y (x)− Λ̂Z̈Ẍ(x)θ2(x)

)
, (4.2)

where Λ̂Z̈Y (x) and Λ̂Z̈Ẍ(x) are local polynomial estimators of ΛZ̈Y (x) and ΛZ̈Ẍ(x),

respectively. It is clear that

θ̂2(x) =
(
Λ̂′

Z̈Ẍ
(x)W(x)Λ̂Z̈Ẍ(x)

)−1
Λ̂′

Z̈Ẍ
(x)W(x)Λ̂Z̈Y (x). (4.3)

If K = 1, the conditional moment equality in (4.1) is just identified, and

θ̂2(x) =
(
Λ̂Z̈Ẍ(x)

)−1
Λ̂Z̈Y (x).

Let [.][j] denote the j-th element of the original vector. We define the estimator for

the contemporaneous treatment effect function β02(.) and the estimator of the intercept

function g2(.) as, respectively,

β̂02(.) =
[
θ̂2(.)

]
[1]

and ĝ2(.) =
[
θ̂2(.)

]
[2]
.

Our proposed estimation approach is related to the augmented moment equality ap-

proach discussed in Bravo (2023). In particular, if we follow Bravo (2023) and carry out

we illustrate semi-parametric estimation and inference following the identification result in (3.2).
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a p-th order local polynomial approximation of the varying-coefficient function θ2(.), we

obtain the augmented estimation function

E

[
Z̈h,x
i2

(
Yi2 −

ℓ∑
l=0

1

p!
Ẍ ′

i2θ
(p)
2 (x)

(
Xi1 − x

h

)p
)
|Xi1 = x

]
≈ 0, (4.4)

with Z̈h,x
i2 =

(
1 Xi1−x

h . . . (Xi1−x
h )p

)′
⊗ Z̈i2 being the augmented instrument vector in-

cluding additional local instruments with bandwidth h.6 The parameter vector of inter-

est in (4.4) is θ̈p2(x) =

(
θ′2(x)

(
θ
(1)
2 (x)

)′
· · ·
(
θ
(p)
2 (x)

)′)′
, which then could be estimated

using the same semi-parametric estimation strategy as discussed above for θ2(.).

In this paper, we particularly focus on the case p = 0 in (4.4), which is just the orig-

inal conditional moment equality (4.1) stated in the beginning of the section. This is

because a higher order expansion of β02(x), the first element of θ2(x), results in more de-

manding first-stage rank conditions that are not compatible with our empirical applica-

tion. However, the proposed estimation approach can be readily adapted with allowing

a higher order expansion of the rest of θ2(x) by adding interaction terms of (Xi1 − x)p,

for p = 1, 2, ..., with the original control vector Hi2. The identification results in (3.2)

and (3.4) remain valid with the augmented control vector because the moment equalities

are conditional on fixed values of Xi1.

4.2 Asymptotic Properties of the Proposed Functional Estimator

Asymptotic properties of the proposed estimator θ̂2(x) are summarized in the following.

Let ℓ be the order of local polynomials used to estimate the population counterparts of

Λ̂Z̈Ẍ(x) and Λ̂Z̈Y (x). We specifically consider the case with ℓ = 0 and ℓ = 1 for local

constant and local linear conditional mean estimation. Let κ(.) be the kernel function

and h be the bandwidth. Let κh(Xi1−x) = κ((Xi1−x)/h)/h. Let µk =
∫
ukκ(u)du and

νk =
∫
ukκ2(u)du. Further, define Ω(x) = W(x)ΛZ̈Ẍ(x)

(
Λ′

Z̈Ẍ
(x)W(x)ΛZ̈Ẍ(x)

)−1
and

Σ(x) = ν0
fX1

(x)E
[
ε̃2i2Z̈i2Z̈

′
i2

∣∣Xi1 = x
]
, where ε̃i2 = εi2 − E[εi2|Xi1].

Let X ∗
1 be an interior subset of X1, the support ofXi1. Researchers are interested in es-

timating the varying coefficient function θ2(.) on X ∗
1 . The following theorem summarizes

the asymptotic properties of the proposed kernel-based conditional GMM estimator θ̂2(.).

6When p = 1, (4.4) coincides with the conditional moment equality considered in Cai and Li (2008)

and Su et al. (2013).
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Theorem 4.1 Suppose that the data {Yi2, Xi1, Xi2, Zi2, H̃i2}Ni=1 follow the data generat-

ing process in equation (3.1) and that Assumption 3.1 (or having Assumption 3.2 replac-

ing 3.1.(a)) and Assumption D.1 in the appendix hold. Let cf (x) = f (1)(x)/f(x). Then

for each x ∈ X ∗
1 ,

√
Nh

(
θ̂2(x)− θ2(x)− h2µ2Ω

′(x)Bℓ(x)
)
→d N(0,Ω′(x)Σ(x)Ω(x)), ℓ = 0, 1,

where the bias term B0(x) = Λ
(1)

Z̈Ẍ
(x)θ

(1)
2 (x) + ΛZ̈Ẍ(x)

(
cf (x)θ

(1)
2 (x) + θ

(2)
2 (x)/2

)
for

local constant estimation and B1(x) = Λ
(1)

Z̈Ẍ
(x)θ

(1)
2 (x) +ΛZ̈Ẍ(x)θ

(2)
2 (x)/2 for local linear

estimation. In the just-identified case, we have

√
Nh

(
θ̂2(x)− θ2(x)− h2µ2Ω

′(x)Bℓ(x)
)
→d N

(
0, (Λ−1

Z̈Ẍ
(x))′Σ(x)Λ−1

Z̈Ẍ
(x)
)
.

Theorem 4.1 states the pointwise asymptotic normality of the functional coefficients.

Similar results can be found in earlier articles on the varying coefficient models, including

Su et al. (2013), Cai et al. (2019) and Bravo (2023) for their own estimators. If a subset

of the functional parameter θ2(.) reduces to constant, as in the benchmark model (2.2),

a faster convergence rate could be obtained for the degenerating subset of parameters.

More will be discussed in Section 4.3.

Let ε̂i2 = Yi2 − Ẍ ′
i2θ̂2(Xi1) and f̂X1(x) be a consistent estimator of fX1(x) for each

x ∈ X1. The asymptotic variance stated in Theorem 4.1 could be estimated by Ω̂(x) =

W(x)Λ̂Z̈Ẍ(x)(Λ̂Z̈Ẍ(x)′W(x)Λ̂Z̈Ẍ(x))−1 and

Σ̂(x) =
h

Nf̂2X1
(x)

N∑
i=1

ε̂2i2Z̈i2Z̈
′
i2κ

2
h(Xi1 − x),

which are consistent estimators for Ω(x) and Σ(x), respectively. The following proposi-

tion formalizes.

Proposition 4.1 Suppose that the conditions in Theorem 4.1 hold. Then for each x ∈

X ∗
1 , Ω̂(x) →p Ω(x) and Σ̂(x) →p Σ(x), and thus Ω̂′(x)Σ̂(x)Ω̂(x) →p Ω

′(x)Σ(x)Ω(x).

4.3 Average Effects

The kernel estimator defined above for the path-dependent contemporaneous treatment

effect also implies a semi-parametric estimator for the average contemporaneous treat-

ment effect parameter defined in Lemma 2.1. In empirical studies, it might be of interest
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to estimate the average effect of treatment even if the treatment is potentially heteroge-

neous.

Let 1{A} be an indicator function that takes 1 if A is true and 0 otherwise. Let

ϑ2 = E[θ2(Xi1)|Xi1 ∈ X ∗
1 ] = p−1

∫
X ∗

1
θ2(x)dFX1(x), where p = E[1{Xi1∈X ∗

1 }]. Define

ϑ̂2 =
1∑N

i=1 1{Xi1∈X ∗
1 }

N∑
i=1

θ̂2(Xi1)1{Xi1∈X ∗
1 }

as the estimator for ϑ2. Recall that the set X ∗
1 is not necessarily the whole support of

Xi1. Practitioners may restrict their interest to a particular subset of empirical interests

or where data is rich. In the empirical example of “China Syndrome”, for example, we

set X1 to [0, 0.5] given the extreme right-skewedness of the Xi1 distribution. Given ϑ̂2,

we can define ̂̄β02 =
[
ϑ̂2

]
[1]

as an estimator for the average contemporaneous treatment

effect β̄02 = [ϑ2][1].

Theorem 4.2 Suppose that conditions in Theorem 4.1 hold and the bandwidth addition-

ally satisfies that Nh4 → 0 at a polynomial rate of N . Let Ns =
∑

i 1{Xi1∈X ∗
1 } with

Ns/N → p ∈ (0, 1] as N → ∞. Then, ϑ̂2 satisfies that√
Ns(ϑ̂2 − ϑ2) →d N(0,Σ∗

1 +Σ∗
2),

where Σ∗
1 = cκE[Ω′(Xi1)E[ε̃2i2Z̈i2Z̈

′
i2|Xi1]Ω(Xi1)|Xi1 ∈ X ∗

1 ], Σ
∗
2 = V[θ2(Xi1)|Xi1 ∈ X ∗

1 ]

and cκ =
∫ ∫

κ(u)κ(u−s)duds. If we further assume that θ2(x) = θ2 for all x ∈ X ∗
1 , then√

Ns(ϑ̂2 − ϑ2) →d N(0,Σ∗
1).

The convergence rate of the average treatment effect is faster than the pointwise

convergence rate of the functional coefficient estimator for using all data with Xi1 ∈ X1

rather than only those in a shrinking window defined by the bandwidth h. To achieve this

parametric convergence rate, a stronger bandwidth condition is required in the theorem.

Similar conditions are also required in the literature. See, for example, Su et al. (2013).

The asymptotic variance of ϑ̂2 consists of two terms where one is associated with the

estimation error of θ̂2(.) and the other is associated with the heterogeneity of θ2(.) on

X ∗
1 . If the function θ2(.) is not path-dependent, the second term Σ∗

2 degenerates to zero.
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The variances Σ∗
1 and Σ∗

2 are estimable respectively by using the following matrices:

Σ̂∗
1 = p̂ ·N−1

∑
j

ε̂2j2ζ̂(Xj1)Z̈j2Z̈
′
j2ζ̂

′(Xj1),

Σ̂∗
2 = N−1

s

∑
i:Xi1∈X ∗

1

(θ̂2(Xi1)− ϑ̂2)(θ̂2(Xi1)− ϑ̂2)
′,

where ζ̂(x) = N−1
s

∑
i:Xi1∈X ∗

1
κh(Xi1 − x)f̂−1

X1
(Xi1)Ω̂

′(Xi1) and ε̂j2 is defined in Sec-

tion 4.2.

The following proposition states consistency properties of the variance estimators.

Proposition 4.2 Suppose that the conditions in Theorem 4.2 hold. Then, Σ̂∗
1 →p Σ∗

1

and Σ̂∗
2 →p Σ

∗
2.

The parametric convergence rate of the proposed average estimator suggests a two-

step estimation procedure for the partially linear benchmark model. The first step in-

volves estimating the average effect ϑ̂2 and obtaining a modified outcome Y ∗
i2 = Yi2 −

H ′
i2

[
ϑ̂2

]
[−1]

with the effect of Hi2 partialed out. The second-step semi-parametric con-

ditional GMM estimation then uses Y ∗
i2 as the outcome, Ẍi2 = (Xi2 1)′ as the regressor

set, and Z̈i2 = (ω2(Zi2)
′ 1)′ as the instrument set. The parametric convergence rate of

the first-step average effect estimator implies that first-step estimation error can be ig-

nored asymptotically in the asymptotic distribution of the second step semi-parametric

estimator. As a result, the proposed two-step estimator would enjoy the same asymp-

totic properties as described in Theorem 4.1 with the second-step definitions of outcome,

regressor set, and instrument set.7

5 Empirical Application: Path-dependent China Shock Effects

Using China’s spectacular, supply-driven export growth as a trade shock, combined with

a first-difference IV strategy, Autor et al. (2013) investigated the impacts of import

7This estimation procedure is differentiated from the two-step estimation methods proposed in Fan

and Huang (2005), Cai et al. (2019), Fan et al. (1998), and Fan and Li (2003). Specifically, when

estimating constant coefficients, the estimators suggested by Fan and Huang (2005), Fan and Li (2003),

and Cai et al. (2019) use the functional coefficient estimates computed on the entire support of Xi1 in our

notation, while our approach utilizes information from areas where data richness is expected. Given that

real-world data, including our empirical application, are often sparsely observed, our two-step estimator,

which only employs densely observed data points, is expected to produce more robust estimation results

for constant coefficients, thereby improving the pointwise estimation result for the functional coefficient.
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penetration on local labor market outcomes. Subsequent studies have adopted or slightly

modified its empirical approach and examined the effects of the trade shock in a variety

of other contexts, including worker-level outcomes (Autor et al., 2014), industry-level

outcomes (Acemoglu et al., 2016), innovation (Autor et al., 2020b) and political outcomes

(Autor et al., 2020a). In addition to import competition, Feenstra et al. (2019) revisited

the analysis by adding the expansion of US exports to the framework. However, none of

the aforementioned studies have yet considered treatment effect dynamics.

In this section, we revisit the China Syndrome application using the proposed model

with treatment effect dynamics. We use the industry-level data from Acemoglu et al.

(2016).8 The outcome of interest (Yit) is the annual log employment change over 1991-

1999 (t = 1) and over 1999-2011 (t = 2) in industry i. The endogenous treatment of

interest (Xit) is the annual change in US exposure to Chinese import over the same two

periods in industry i. The external instrument (Zit) is the annual change in exposure to

Chinese import in eight other high-income countries defined in Acemoglu et al. (2016)

over the same two periods.

Investigating treatment effect dynamics is especially interesting in the China syn-

drome application because the empirical literature has suggested different channels through

which the contemporaneous effect of import competition could be path-dependent. For

instance, if an industry was hit hard by Chinese import competition in the first decade,

the industry may undergo a structural change and transforms its production process from

low-quality to high-quality (Bloom et al., 2016). Consequently, in the second period, the

industry exhibiting structural transformation may have better capabilities than other in-

dustries with no such transformation in responding to the contemporaneous China im-

port competition. On the other hand, the industry hit hard by Chinese import com-

petition may reduce innovation activities (Autor et al., 2020c). In such a case, the in-

dustry experiencing slowdown in innovation may have worse competence in coping with

8We use the industry-level data in Acemoglu et al. (2016) rather than the location-level data, which

is more popular in the China syndrome literature. This is because external instruments in location-level

regressions take a shift-share form, which can cause complications in inference as is explained in Borusyak

et al. (2022) and Adão et al. (2019). Meanwhile, Borusyak et al. (2022) also showed that the identification

power of shift-share instruments comes exclusively from industry-level shocks used to in their construction.
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Chinese import competition than other industries with no such innovation deceleration.

That is, either scenario can result in path-dependent contemporaneous treatment effects

in the second period. However, to our best knowledge, no such an empirical framework

has been proposed to estimate path-dependent contemporaneous treatment effects.

We use three different variations of the control vector (H̃it): 1) intercept only, 2)

a full set of one-digit manufacturing sector fixed effects, and 3) the sector fixed effects

as well as all production controls and pre-trend controls considered in Acemoglu et al.

(2016), including production workers as a share of total employment, the log average

wage, the ratio of capital to value added (in 1991), computer investment as a share

of total investment, high-tech equipment as a share of total investment (in 1990), and

changes in the log average wage and in the industry’s share of total employment over

1976–1991. The data set is a balanced panel of 392 four-digit manufacturing industries

over two time periods.

An important first step in studying the potentially path-dependent treatment effect

is to determine the initial treatment timing upon which our identification condition is

based. In this application, US imports from China had been almost negligible in the 1980s

and started to increase in the early 1990s, see Autor et al. (2014, Fig. 1) and Acemoglu

et al. (2016, Fig. 2). Therefore, it is reasonable to consider the period from 1991 to

1999 as the first period where the treatment was given to US industries. Furthermore,

around the turn of the century, China’s accession to the WTO accelerated US imports

from China. Given these circumstances, we focus on estimating the potentially path-

dependent treatment effect in the second period (1999-2011)—that is, the impact of the

China trade shock in the later period (1999-2011) depending on the magnitude of the

treatment in the previous period (1991-1999).

Table 1 presents estimation results of several parametric estimators. The estima-

tor para 1, as is reported in columns (1), (4), and (7), follows the model in equation (2.1).

It is also the existing parametric approach adopted by the empirical literature. The es-

timator para 2, as is reported in columns (2), (5), and (8), is based on the 2SLS re-

gression of Y2 on (X2, X1, X1X2) instrumented by (Z2, X1, X1Z2). The estimator para

3, as is reported in columns (3), (6), and (9), is based on the 2SLS regression of Y2 on

(X2, X1, X1X2) instrumented by (Z2, Z1, Z1Z2). As is discussed in Section 2.3 as well
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as through the Monti Carlo simulations in Appendix B, the three parametric estimators

rely on different exclusion restrictions.

Besides the difference in exclusion restrictions, columns (1)-(3), (4)-(6) and (7)-(9)

in Table 1 differ in the additional control vector in use. Columns (1)-(3) are intercept

only. Columns (4)-(6) include sector fixed effects. Columns (7)-(9) include both sector

fixed effects and industry production and pretrend controls. The coefficient estimate

reported in Column (1) of Table 1, -1.08, is comparable with the coefficient estimate of

-1.16 reported in column (7) of Table 2 in Acemoglu et al. (2016). The estimates are

not exactly identical to each other because Acemoglu et al. (2016) weigh observations by

1991 employment while we do not use a weighted regression.

Across the columns in Table 1, the contemporaneous effect estimators for t = 2 tend

to lose statistical significance as more controls are added to the parametric 2SLS regres-

sion. In addition, parametric approaches to allowing for direct carryover effect and path-

dependency in contemporaneous effect do not seem to be successful. The direct carry-

over coefficients and the parametric path-dependency coefficients reported in columns

(5), (6), (8) and (9) do not have statistical precision.

Figure 1: Distribution of X1 and First-stage F Statistics
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Note: Data are from Acemoglu et al. (2016). Kernel densities reported in the left and middle graphs use the

density command in R and the default bandwidths. The first-stage F test statistics reported in the right graph

are from local 2SLS regressions using the specification reported in Column (7) of Table 1 but with observations

weighted by kernel weights, calculated using the same kernel function and bandwidth as in the semi-parametric

estimations reported in Figure 2.
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Table 1: Parametric 2SLS Regression Results

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6) (7) (8) (9)

para 1 para 2 para 3 para 1 para 2 para 3 para 1 para 2 para 3

X2 -1.08∗∗∗ -1.01∗∗∗ -0.37 -0.47∗∗ -0.44∗ -0.11 -0.31 -0.31 -0.08

(0.21) (0.25) (0.34) (0.19) (0.23) (0.28) (0.20) (0.24) (0.28)

X1 -0.99∗∗∗ -3.26∗∗∗ -0.22 -1.46 -0.03 -0.92

(0.38) (1.13) (0.33) (1.04) (0.33) (1.20)

X1X2 0.13 0.21 0.02 0.05 0.03 0.01

(0.09) (0.15) (0.08) (0.13) (0.07) (0.13)

Sector FEs N N N Y Y Y Y Y Y

Controls N N N N N N Y Y Y

F-S Test 742 203 12 621 201 10 574 198 7

N 392 392 392 392 392 392 392 392 392

Note: Data are from Acemoglu et al. (2016). Parametric 2SLS regressions are carried out with Stata. F-S Test is

the minimum eigenvalue statistic reported following the ivregress 2sls command in Stata. ∗, ∗∗ and ∗∗∗ indicate

significance at 10%, 5%, and 1% level, respectively.

Next, we use the proposed semi-parametric method to estimate the potentially path-

dependent contemporaneous effect of Chinese import competition. Figure 2 reports func-

tional estimates of β02(x1) evaluated at x1 ∈ [0, 0.5], for industries that experienced a Chi-

nese import exposure rise of 0-0.5 percentage points per year over the first decade, i.e.,

1991-1999. Given the peculiar heavy right-skewness (see Figure 1), the X1 range we re-

port in Figure 2 includes over 80% of the industries. The two semi-parametric estimators

reported in Figure 2, semi 1 and semi 2, are both just-identified. They differ in whether

to allow for a local linear expansion of the control vector’s coefficient functions. Details

are discussed in the simulation section in Appendix B. The two semi-parametric estima-

tors gives very similar results as is seen in Figure 2 and lead to the same empirical findings.

We see from Figure 2 that all semi-parametric estimators report a negative second-

period contemporaneous effect for X1 ∈ [0, 0.3]. The size of the negative effect tends to

decrease as more control variables are introduced to the model. Nonetheless, statistical

significance is preserved for X1 ∈ [0, 0.3], as additional controls soak up variations in the
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Figure 2: Second-period Contemporaneous Treatment Effect Estimates
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Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Appendix B with ϱ = 3.5. Robustness checks with ϱ = 3.25 and ϱ = 3.75 are

reported in the appendix and see similar empirical results. The blue dotted line of para 1 in the left/middle/right

graph corresponds to the estimates reported in columns (1)/(4)/(7) of Table 1, respectively.

error term of the outcome equation. The lack of statistical precision after X1 exceeds

around 0.3 is due to sparse data, and is expected from both the density graph and the

the first-stage F test statistics graph in Figure 1.

The most interesting empirical finding of Figure 2 is the downward-sloping functional

form of the path-dependent contemporaneous China shock effect, shared by all three

graphs of Figure 2. The results indicate that previous decade’s Chinese import expo-

sure magnifies the negative impact of the current decade’s Chinese import exposure on

employment. The magnifying effect is seen to be fairly small if the previous decade’s

Chinese import exposure is relatively mild but becomes much larger (i.e., steeper slope)

when X1 is larger than around 0.2.

To conclude the empirical section, we report the average contemporaneous treatment

effect estimates in Table 2. The first row of the table reports semi-parametric average

contemporaneous effect estimates integrated over the X1 range of [0, 0.3], where the func-

tional estimates reported in Figure 2 are quite precisely estimated. Compared to para-

metric estimates reported in columns (1), (4), and (7) of Table 1, the semi-parametric

average effect estimates are around 40% smaller when no control variables are considered
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Table 2: Average Contemporaneous China Shock Effect in 1999-2011

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6)

semi 1 semi 2 semi 1 semi 2 semi 1 semi 2

X ∗
1 ∈ [0, 0.3] -0.68∗∗ -0.60∗∗ -0.33∗∗∗ -0.30∗∗∗ -0.31∗∗ -0.29∗∗

(0.29) (0.27) (0.11) (0.11) (0.13) (0.14)

X ∗
1 ∈ [0, 0.2] -0.62∗∗ -0.55∗ -0.29∗∗∗ -0.27∗∗ -0.25∗∗ -0.24∗

(0.30) (0.28) (0.11) (0.11) (0.13) (0.13)

X ∗
1 ∈ [0.2, 0.3] -1.49∗∗∗ -1.35∗∗∗ -0.85∗∗∗ -0.79∗∗∗ -1.04∗∗∗ -0.96∗∗∗

(0.53) (0.52) (0.25) (0.29) (0.32) (0.35)

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Appendix B with ϱ = 3.5. Robustness checks with ϱ = 3.25 and ϱ = 3.75 are

reported in the appendix and see similar empirical results. ∗, ∗∗ and ∗∗∗ indicate significance at 10%, 5%, and 1%

level, respectively.

and 30% smaller when sector fixed effects are considered. In terms of statistical signif-

icance, all semi-parametric results reported in Table 2 are statistically significant. The

parametric regression results (see Table 1), on the other hand, lose statistical significance

as controls and fixed effects are added into the model.

The second and third rows of Table 2 report contemporaneous effect estimates aver-

aged over the X1 range of [0, 0.2] and [0.2, 0.3], respectively. Across all three model speci-

fications, the contemporaneous China shock effect in 1999-2011 is much larger in the third

row, i.e., when an industry’s China shock exposure in the last decade is over 0.2 percent-

age points per year. In particular, when all production controls, pre-trend controls, and

sector fixed effects are controlled, estimates in columns (5) and (6) suggest that a 1 per-

centage point increase in industry import penetration reduces domestic industry employ-

ment by about 0.25 percentage point when averaged over X1 ∈ [0, 0.2], and about 1 per-

centage point when averaged over X1 ∈ [0.2, 0.3]. – The contemporaneous China shock

effect in 1999-2011 is four folds as large for industries exposed to substantial China shock

in the past decade, compared to industries exposed to small or moderate shock in the 90’s.

The bigger contemporaneous effect estimates of industries exposed to larger earlier

shocks underscore the importance of path-dependency in the contemporaneous treatment
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effect in the 2000s. While our goal is not to uncover an underlying mechanism behind

the magnifying effect, the result could be cautiously interpreted as evidence of decreased

innovation activities caused by an earlier exposure to Chinese import penetration during

the 1990s. For example, industries significantly affected by Chinese import penetration

might have decreased their innovation activities in the first period (Autor et al., 2020c),

which further weakens their ability to cope with Chinese import competition in the

following period.

6 Conclusion

In the paper, we propose a new panel IV model featuring treatment effect dynamics.

Specifically, our new model allows for a direct carryover effect of the preceding treatment

and path-dependency in the contemporaneous treatment effect. We show that in the

presence of treatment effect dynamics, existing textbook 2SLS estimators become incon-

sistent if external instruments are serially correlated. To address this issue, we propose

a novel semi-parametric identification and estimation procedure and study asymptotic

properties of the suggested estimators. We show that the proposed estimators have sat-

isfactory small sample performance. When applied to revisit the seminal study by Ace-

moglu et al. (2016) on the China syndrome, our proposed method reveals important em-

pirical findings that have not been discovered previously. In particular, we find that the

contemporaneous impact of increased Chinese import competition on US manufacturing

employment is magnified by the import exposure in the preceding decade. The size of the

magnifying effect is mild if the last decade’s import exposure was small or moderate. But

the interaction between the past and current trade shocks becomes much more significant

when the import exposure over the last decade exceeds 0.2 percentage points per year.
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Appendix A: Robustness Checks for Empirical Analysis

In this section, we report robustness checks of the empirical results using alternative

bandwidths for semi-parametric estimation. Figure 3 and Table 3 show that empirical

findings drawn in Section 5 are not sensitive to alternative bandwidths choices.

Figure 3: Second-period Contemporaneous Treatment Effect Estimates
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Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Appendix B with ϱ = 3.25 in the top panel and ϱ = 3.75 in the bottom panel.
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Table 3: Robustness Checks with Alternative Bandwidths

Intercept Only Sector FEs Only Controls and Sector FEs

(1) (2) (3) (4) (5) (6)

semi 1 semi 2 semi 1 semi 2 semi 1 semi 2

Panel B: κ = 3.25

X ∗
1 ∈ [0, 0.3] -0.70∗∗ -0.61∗∗ -0.34∗∗∗ -0.31∗∗∗ -0.31∗∗ -0.29∗∗

(0.31) (0.29) (0.12) (0.12) (0.13) (0.14)

X ∗
1 ∈ [0, 0.2] -0.65∗∗ -0.57∗ -0.30∗∗∗ -0.28∗∗ -0.26∗∗ -0.26∗

(0.32) (0.29) (0.12) (0.12) (0.13) (0.14)

X ∗
1 ∈ [0.2, 0.3] -1.43∗∗∗ -1.24∗∗∗ -0.78∗∗∗ -0.71∗∗∗ -0.88∗∗∗ -0.80∗∗∗

(0.46) (0.45) (0.23) (0.26) (0.27) (0.31)

Panel B: κ = 3.75

X ∗
1 ∈ [0, 0.3] -0.67∗∗ -0.60∗∗ -0.32∗∗∗ -0.29∗∗∗ -0.31∗∗ -0.28∗∗

(0.27) (0.27) (0.11) (0.11) (0.14) (0.14)

X ∗
1 ∈ [0, 0.2] -0.60∗∗ -0.54∗∗ -0.28∗∗ -0.25∗∗ -0.24∗ -0.23∗

(0.28) (0.27) (0.11) (0.11) (0.13) (0.14)

X ∗
1 ∈ [0.2, 0.3] -1.58∗∗ -1.49∗∗ -0.89∗∗∗ -0.81∗∗∗ -1.18∗∗∗ -1.01∗∗∗

(0.62) (0.61) (0.27) (0.30) (0.36) (0.38)

Note: Data are from Acemoglu et al. (2016). Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb discussed in Appendix B with ϱ = 3.25 in panel A and ϱ = 3.75 in panel B. ∗, ∗∗ and ∗∗∗

indicate significance at 10%, 5%, and 1% level, respectively.

Appendix B Monte Carlo Simulations

In this section, we study the small sample performance of the proposed semi-parametric

varying coefficient estimator and the average effect estimator whose asymptotic proper-

ties are studied respectively in Sections 4.2 and 4.3. We focus on a two-period model.

Throughout simulations in this section, first-period random variables are generated as:

(e, v, η, ψ, ϵ) ∼i.i.d. N(0, 0.22), X1 = ψ + ν, Z1 ∼ 0.5X1 + ϵ,

where ν ∼i.i.d. exponential(1) and independent of (e, v, η, ψ). This simulation setup is

designed for a right-skewed distribution of X1, as is observed in our empirical application

in Section 5. The distribution of X1 is plotted in the right graph of Figure 4. In both
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simulation and empirical sections of the paper, we set X ∗
1 to [0, 0.5], where data are

relatively densely observed.

For the second period, we consider various DGPs, starting from a baseline DGP

obtained by fitting parametric OLS regressions to the empirical dataset. Across all DGPs,

we consider two sample sizes: 250 and 1,000, and report the estimated contemporaneous

effect functions averaged across 1,000 simulations.

We conduct two variations of the semi-parametric estimation approach discussed

in Section 4.1 and report their performance. Recall that the instrument set Z̈t =

(ωt(Zt)
′ H ′

t)
′. For the purpose of estimating β2(x1), for all x1 ∈ [0, 0.5], the first semi-

parametric estimator (semi 1 ) defines ωt(Z2) = Z2 and H2 = 1. The second semi-

parametric estimator (semi 2 ) keeps ωt(Z2) = Z2 but defines H2 = (1 X1 − x)′ to allow

for a better approximation of the intercept function.

We compare these two semi-parametric estimators to parametric estimators employed

in the literature. Specifically, we consider three parametric estimators of β02(.). The

first parametric estimator (para 1 ) is based on model existing or equation (2.1). The

second (para 2 ) is based on the 2SLS regression of Y2 on (X2, X1, X1X2) instrumented

by (Z2, X1, X1Z2), while the last (para 3 ) is based on the 2SLS regression of Y2 on

(X2, X1, X1X2) instrumented by (Z2, Z1, Z1Z2). As is discussed in Section 2.3, the three

parametric estimators rely on different exclusion restrictions.

For semi-parametric estimation, under-smoothing is required for the average estima-

tor to ensure satisfactory asymptotic properties. Following Chernozhukov et al. (2013),

we use the rule-of-thumb bandwidth:

h = ĥROT × ŝ×N1/5−1/ϱ,

where ŝ is the standard deviation of X1 and ϱ is an under-smoothing tuning parameter.

ĥROT minimizes the weighted Mean Integrated Square Error of the local linear estimation

of Y2 on studentized X1. We also follow Chernozhukov et al. (2013) to use the quartic

kernel function (i.e., κ(s) = 15/16(1−s2)2 ·1{|s|≤1}) and set the value of ϱ to 3.5. In both

simulation and empirical sections, we also run simulations with ϱ = 3.25 and ϱ = 3.75 as

a robustness check.

As is discussed earlier, the baseline DGP is estimated from the empirical dataset of
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Acemoglu et al. (2016) using OLS regressions. Key features of the DGP is reported in

Figure 5. It is worth noting that since the OLS ignores potential endogeneity in the

model, relationships depicted in Figure 5 shall not be compared with the causal analysis

conducted in Acemoglu et al. (2016) or in our revisit reported in Section 5.

DGP A: the baseline model

Z2 = 0.420 + 1.182Z1 + e,

X2 = 0.083 + 0.156X1 + (0.82 + 0.002X1)Z2 + v,

Y2 = −3.415− 2.461X1 + 0.259X2
1 + (−0.916 + 0.636X1 − 0.095X2

1 )X2 + u,

with u = 0.6η + 0.6v.

Under the baseline DGP, X2 is an endogenous regressor for the outcome equation of Y2,

whileX1 is exogenous. In addition, both Z1 and Z2 are valid instruments under this DGP.

Figure 4: The Baseline Data Generating Process (DGP A)
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Figure 4 shows that under the baseline DGP, both the carryover and contemporaneous

treatment effects at t = 2 are negative, while their magnitudes (in absolute values) tend

to decrease as X1 gets larger. Moreover, within the considered range of X1, curvatures

of the effect functions are hardly noticeable despite their quadratic functional forms,

implying that both para 2 and para 3 are close to be correctly specified.

Figure 5 compares the performance of various contemporaneous effect estimators.

The left graph is for N = 250 and the right is for N = 1, 000. We see that the estimator

para 1, which is popular in empirical studies, deviates dramatically from the true con-
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Figure 5: Simulation Results, DGP A
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5.

temporaneous effect function. The other two parametric estimators, para 2 and para 3,

perform reasonably well, which is expected by their almost correct model specifications

under the baseline DGP.

The semi-parametric estimator semi 2 performs comparably to para 2 and para 3

in regions with higher density of X1 (i.e., X1 ∈ [0, 0.3]). Meanwhile, under the baseline

DGP, estimation errors of the other semi-parametric estimator semi 1 are non-negligible

but improve dramatically with the increase of the sample size.

Next, we modify the second-period contemporaneous effect function to allow it to

have an exaggerated curvature within the considered range. Under the new DGP, all

parametric estimators are expected to perform poorly due to substantial model mis-

specifications.

DGP B: the model with an exaggerated curvature

Y2 = −3.415− 2.461X1 + 1.295X2
1 + (−0.916 + 0.636X1 − 0.475X2

1 )X2 + u.

Figure 6 summarizes estimation results for DGP B. First we notice that none of the

parametric estimators can reproduce the quadratic true effect function, regardless of the
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Figure 6: Simulation Results, DGP B
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5.

sample size. The estimator semi 2 continues to report simulation averages very close to

the true contemporaneous effect function. The other semi-parametric estimator semi 1

also captures the curvature of the second-period contemporaneous effect function well,

although its simulation average continues to show a noticeable deviation from the true

function when the sample size is small. When N = 1, 000, semi 1 performs substantially

better and outperforms all parametric estimators.

The third DGP modifies DGP A in the direction opposite to that considered in

DGP B. Specifically, we explore the performance of the estimators when there is no path-

dependency in the contemporaneous treatment effect. Under this scenario, all parametric

and semi-parametric estimators are consistent. Hence, instead of comparing estimated

curves, we compute the empirical mean squared error (MSE) of each estimator to make

a more meaningful comparison of their finite sample performances.

DGP C: no carryover effect or path-dependency in contemporaneous effect

Y2 = −3.415− 0.916X2 + u.

Figure 7 reports the empirical MSEs of each estimator as a function of X1. Not sur-
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Figure 7: Simulation Results, DGP C (Empirical MSEs)
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Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5. Robustness results with alternative bandwidths are reported in the appendix.

prisingly, the simplest parametric estimator, para 1, gives the smallest MSE, since its

model is correctly specified under this DGP. The two kernel-based semi-parametric esti-

mators have efficiency loss, especially in low density regions, for only using data within

local estimation windows. The most interesting finding of Figure 7 is that the paramet-

ric estimator para 3 performs worse, in terms of empirical MSE, than the semiparamet-

ric estimators for both simulation sample sizes. This unsatisfactory small sample perfor-

mance of para 3 speaks about its demanding rank condition arose from the use of three

endogenous regressors.

Last but not least, we consider a scenario where exclusion restrictions of external

instruments are valid ONLY after conditioning on the endogenous treatment from the

last period. Specifically, we consider the following two DGPs with the outcome equation

being the same as the one in DGP C.

DGPs C-2, C-3: no sequential exogeneity

DGP C-2: u =0.6η + 0.6v + 0.5ψ,

DGP C-3: u =0.6η + 0.6v − 0.5ψ.
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Figure 8: Simulation Results DGPs C-2 and C-3
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Note: Simulations are carried out 1,000 times. N = 1, 000. Semi-parametric kernel function and bandwidth are

chosen following the rule-of-thumb with ϱ = 3.5.

DGPs C-2 and C-3 keep the underlying model of DGP C except for modifying the

construction rule of the outcome error u. Under the new DGPs, the unconditional ex-

clusion restriction E[Z2u2] = 0 is invalid due to the nontrivial correlation between u and

ψ.9 As a result, all three parametric estimators are inconsistent. On the other hand, the

conditional exclusion restriction required for our semi-parametric estimation method is

satisfied.10 The simulation results are summarized in Figure 8. Similar to the case of

DGP B, only the semi-parametric estimators, in particular semi 2 and in regions with

higher density of X1 (i.e., X1 ∈ [0, 0.3]), shows reasonable small sample performance.

To investigate the small sample performance of the proposed inference procedure

described in Proposition 4.1, we carry out pointwise t-tests following each parametric

and semi-parametric estimation method. Figure 9 reports the rejection proportion of

each test under various DGPs.

9Specifically, under DGP C-2, E[Z2u2] = E[(0.420+1.182 · (0.5(ψ+ ν)+ ϵ)+ e)(0.6η+0.6v+0.5ψ)] =

1.182 · 0.25E[ψ2] ̸= 0, and similarly under DGP C-3, E[Z2u2] = −1.182 · 0.025E[ψ2] ̸= 0.
10Specifically, given the independence between the ϵ,e,ψ, and ν, we have E[u2|Z2, X1] = E[0.6η+0.6v+

0.5ψ|Z2, X1] = E[0.5ψ|Z2, X1] = E[0.5ψ|1.182ϵ+ e,X1] = E[0.5ψ|X1].
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Figure 9: Size Control, DGPs A, B, C-2, and C-3
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Note: Simulations are carried out 1,000 times. N = 1, 000. Semi-parametric kernel function and bandwidth are

chosen following the rule-of-thumb with ϱ = 3.5.

Testing results reported in Figure 9 are in line with simulation results reported in

Figures 5, 6, and 8 for estimator properties. The existing parametric method, or para

1, popularly adopted in the empirical literature, performs the worst across all DGPs A,

B, C-2, and C-3. The estimator para 2 performs much better than para 1, although it

can still lose size control under unfavorable DGPs. The most sophisticated parametric
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estimator, para 3, shows much more robust size performance in Figure 9 except for some

small distortions under DGP B. However, as is already shown in Figure 7, this more

flexible parametric estimator takes on huge efficiency losses in small samples. In contrast,

both semi-parametric estimators, semi 1 and semi 2, have good pointwise size control

for the reported range of Xi1 values.

Table 4: Small Sample Performance of the Average Effect Estimator

N=250 N=1,000

True Para 1 Semi 1 Semi 2 Para 1 Semi 1 Semi 2

DGP A

Avg. Est. -0.782 -1.166 -0.834 -0.794 -1.129 -0.808 -0.786

RMSE - 0.395 0.081 0.061 0.350 0.040 0.030

T-Test Size 0.050 0.785 0.090 0.033 0.997 0.095 0.037

DGP B

Avg. Est. -0.807 -1.139 -0.851 -0.819 -1.102 -0.828 -0.810

RMSE - 0.343 0.075 0.060 0.298 0.036 0.030

T-Test Size 0.050 0.765 0.070 0.033 0.996 0.068 0.037

DGP C

Avg. Est. -0.916 -0.916 -0.922 -0.923 -0.916 -0.917 -0.917

RMSE - 0.044 0.057 0.058 0.022 0.029 0.029

T-Test Size 0.050 0.043 0.040 0.036 0.043 0.039 0.037

DGP C-2

Avg. Est. -0.916 -0.972 -0.928 -0.920 -0.967 -0.921 -0.916

RMSE - 0.071 0.054 0.054 0.056 0.027 0.027

Test Size 0.050 0.209 0.040 0.037 0.635 0.035 0.034

DGP C-3

Avg. Est. -0.916 -0.857 -0.912 -0.922 -0.861 -0.910 -0.917

RMSE - 0.070 0.050 0.052 0.058 0.026 0.026

Test Size 0.050 0.338 0.045 0.039 0.771 0.043 0.039

Note: Simulations are carried out 1,000 times. Semi-parametric kernel function and bandwidth are chosen following

the rule-of-thumb with ϱ = 3.5.

Before concluding this section, we study the small sample performance of the semi-

parametric average estimator proposed in Section 4.3. Small sample performances are
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measured by the average estimator across simulations, root MSE (RMSE), and the size of

associated t-test with simulation results reported in Table 4. We see that proposed semi-

parametric average estimators based on both semi 1 and semi 2 perform significantly

better than the existing parametric estimator para 1 except under DGP C. Under DGP

C, however, where the true model is free of any treatment effect dynamic features, the

existing parametric estimator para 1 has better small sample performance. Among the

two semi-parametric average estimators, the one based on semi 2 performs better in

small samples, which is in line with results shown in the rest of the simulation section.

Appendix C: Parametric Identification

Without loss of generality, we discuss the case T = 2 for parametrically identifying the

benchmark model (2.2).

Let νi,s:t = (ν ′is . . . ν ′it)
′ denote the random vector that stacks νiℓ from period s

to period t. Let ∨ denote the larger and ∧ the smaller of two numbers. Let fit =

ωt(Zi,[(t−s)∨1]:t) be the dft-dimensional vector generated by external instruments from

period [(t− s) ∨ 1] to period t with known function ωt(.). Then unknown parameters in

model (2.2) are identified through classic parametric 2SLS or GMM estimation strategies

under the following assumptions. For t = 1, the enodgeneous regressor is Xi1 and the

external instrument set is fi1. For t = 2, the enodgeneous regressor is ψi,dβXi2 and the

external instrument set is fi2.

Assumption C.1 (parametric identification) Assume that

1. (known functional form) β02(Xi1) = ψ′
i,dβ

ηdβ , where ψi,dβ = (1 ψ2(Xi1) . . . ψdβ (Xi1))
′

and ηdβ is a dβ-dimensional parameter vector;

2. (exclusion restriction) E[εit|Zi,[(t−s)∨1]:t, H̃it] = 0, for s = 0, 1 and t = 1, 2;

3. (rank condition) E[(f ′i1 H ′
i1)

′(X ′
i1 H

′
i1)] and E[(f ′i2 H ′

i2)
′(X ′

i1 (ψi,dβXi2)
′ H ′

i2)] are

both of full rank.

Assumption C.1.1 is a standard parametric functional form assumption. Assump-

tions C.1.2 and C.1.3 are standard exclusion restriction and rank condition for para-

metric IV regressions. If s = 1, the assumption reduces to E[εi1|Zi1, H̃i1] = 0 and
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E[εi2|Zi1, Zi2, H̃i2] = 0. If pre-intervention periods of the external instrument (e.g., Zi0,

Zi(−1)) are observed, Assumption C.1.2 could also be modified to utilize such information.

Appendix D: Additional Assumptions and Some Useful Lemmas

The following assumption is required for the asymptotic results stated in Section 4.

Assumption D.1 (a) The observations {Yi2, Xi1, Xi2, Zi2, H̃i2}Ni=1 are i.i.d.

(b) The density function fX1(.) of Xi1 is twice continuously differentiable with bounded

derivatives and bounded away from zero on X1, the compact support of Xi1.

(c) The function θ2(.) is three times continuously differentiable on X1.

(d) The kernel function κ(.) is a symmetric density function with compact support.

(e) The matrix ΛZ̈Ẍ(.) is twice continuously differentiable on X1, and E[ε̃2i2Z̈i2Z̈
′
i2|Xi1 =

.] is Lipschitz continuous on X1.

(f) There exists an s > 2 such that supx∈X1
E[∥Z̈i2∥2s|Xi1 = x] <∞, supx∈X1

E[|Xi2|2s|Xi1 =

x] <∞ and supx∈X1
E[|Yi2|2s|Xi1 = x] <∞ and N2δ−1h→ ∞ for some δ < 1−s−1.

(g) h→ ∞, Nh3 → ∞, Nh7 → 0 as N → ∞.

Next, we define some useful notations. Let ιj be a (ℓ+ 1)-dimensional vector whose

j-th element is one and all the rest elements are non-zero. Let X̃ ′
i1(x) = (1 (Xi1 −

x) . . . (Xi1−x)ℓ). For all values of x, the ℓ-th order local polynomial estimator of Λ̂Z̈Y (x)

is defined as

Λ̂Z̈Y (x) = N−1
∑
i

κh(Xi1 − x)Z̈i2Yi2X̃
′
i1(x)M̂(x)−1ι1,

with M̂(x) = N−1
∑

i κh(Xi1 − x)X̃i1(x)X̃
′
i1(x). Similarly, the l-th column of the local

polynomial estimator Λ̂Z̈Ẍ(x) is defined as[
Λ̂Z̈Ẍ(x)

]
.,l
= N−1

∑
i

κh(Xi1 − x)Z̈i2Ẍi2,lX̃
′
i1(X)M̂(x)−1ι1,

where Ẍi2,l is the l-th element of Ẍi2.
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To derive asymptotic properties of the above defined estimators, we first introduce

several matrix notations. Let X̃1(x) be a N × (ℓ + 1) matrix whose i-th row is given

by X̃ ′
i1(x) and K(x) be a N × N diagonal matrix whose diagonal entries are given by

{κh(Xi1 − x)}Ni=1. For notational convenience, we hereafter let dZ̈ and dẌ denote the

dimensions of Z̈i2 and Ẍi2. Moreover, let Ỹi2 = Z̈i2Yi2 and X̃i2 = vec(Z̈i2Ẍ
′
i2) and Ỹ2

and X̃2 be N × dZ̈ and N × dZ̈dẌ matrices collecting the vectors Ỹi2 and X̃i2. Then,

M̂(x) = N−1X̃′
1(x)K(x)X̃1(x),

Λ̂Z̈Y (x) = N−1Ỹ′
2K(x)X̃1(x)M̂(x)−1ι1,

vec(Λ̂Z̈Ẍ)(x) = N−1X̃′
2K(x)X̃1(x)M̂(x)−1ι1.

For each integer j, we let Mj = (µi+k+j−2)1≤i,k≤ℓ+1 with µk =
∫
ukκ(u)du for an

integer k. Let M ≡ M0. It is easy to see that and Mjιs = Mj−1ιs+1 for s = 1, . . . , ℓ. The

matrix D is defined by a (ℓ+1)×(ℓ+1) diagonal matrix whose diagonal entries are given

by {1 h · · ·hℓ}. Moreover, we let LZ̈Ẍ(x) be a dẌdZ̈ × (ℓ+ 1) matrix whose ith column

is given by vec(Λ
(i−1)

Z̈Ẍ
)/(i− 1)!. Following classic kernel derivations in, for example, Fan

and Gijbels (1996), we know that, for all x ∈ X1, under the conditions of Theorem 4.1,

D−1M̂(x)D−1 = MfX1(x) + hM1f
(1)
X1

(x) +Op(ah), (D.1)

vec(Λ̂Z̈Ẍ(x)) = vec(ΛZ̈Ẍ(x)) +Op((Nh)
−1/2) +Op(hℓ), (D.2)

where ah = (Nh)−1/2 + h2 = o(h) since Nh3 → ∞, and hℓ is h
2 for both local constant

local linear estimation.

The following two lemmas state useful results for proving the Theorems and Propo-

sitions of the main paper.

Lemma D.1 Let B̂(x) = N−1
∑

i Z̈i2Ẍ
′
i2θ2(Xi1)X̃

′
i1(x)κh(Xi1−x)M̂−1(x)ι1−Λ̂Z̈Ẍ(x)θ2(x).

Suppose that the conditions in Theorem 4.1 hold. Then,

B̂(x) = h2µ2Bℓ +Op(h
3),

for ℓ = 0, 1, with Bℓ defined in Theorem 4.1.
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Lemma D.2 Suppose that the conditions in Theorem 4.1 hold. Then, the following holds

uniformly for x ∈ X1.

sup
x∈X1

∥∥D−1M̂(x)D−1 −
(
MfX1(x) + hM1f

(1)
X1

(x)
)∥∥ = Op(ch + h2) (D.3)

sup
x∈X1

∥Ψ(x)∥ = Op(ch), (D.4)

sup
x∈X1

∥Ψ̂(x)−Ψ(x)∥ = Op(ch(ch + h)), (D.5)

sup
x∈X1

∥∥vec(Λ̂Z̈Ẍ(x)−ΛZ̈Ẍ(x))
∥∥ = Op(ch + h2), (D.6)

sup
x∈X1

∥(Ω̂′(x)−Ω′(x))Ψ(x)∥ = Op(ch(ch + h2)), (D.7)

sup
x∈X1

∥∥B̂(x)∥ = Op(hch + h2) (D.8)

where ch = (log(1/h)/(Nh))1/2 and Ψ(x) ≡ 1
N

∑
i κh(Xi1−x)ε̃i2Z̈i2X̃

′
i1(x)D

−1M−1ι1f
−1
X1

(x).

Proof of Lemma D.1:

Given that Λ̂Z̈Ẍ(x)θ2(x) = (θ2(x)⊗ IdZ̈ )
′vec(Λ̂Z̈Ẍ(x)) , we find that

B̂(x) = N−1
∑
i

(
(θ2(Xi1)− θ2(x))⊗ IdZ̈

)′
X̃i2ι

′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x)

= B̃1(x) + B̃2(x) +RB(x), (D.9)

where

B̃1(x) = (θ
(1)
2 (x)⊗ IdZ̈ )

′N−1
∑
i

h

(
Xi1 − x

h

)
X̃i2ι

′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x)

≡ (θ
(1)
2 (x)⊗ IdZ̈ )

′N−1
∑
i

b̂i1(x),

B̃2(x) = (θ
(2)
2 (x)/2⊗ IdZ̈ )

′N−1
∑
i

h2
(
Xi1 − x

h

)2

X̃i2ι
′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x)

≡ (θ
(2)
2 (x)/2⊗ IdZ̈ )

′N−1
∑
i

b̂i2(x),

RB(x) = N−1
∑
i

(θ
(3)
2 (ξi)/6⊗ IdZ̈ )

′h3
(
Xi1 − x

h

)3

X̃i2ι
′
1M̂

−1(x)X̃i1(x)κh(Xi1 − x).

where RB(x) is the Taylor expansion remainder term with ξi lying between x and Xi1

for all i.
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For the term B̃1(x), we know that

E[N−1
∑
i

b̂i1(x)|Xi1] = N−1
∑
i

vec(ΛZ̈Ẍ(Xi1)) (Xi1 − x) X̃ ′
i1(x)M̂

−1(x)ι1κh(Xi1 − x)

= N−1
∑
i

(
LZ̈Ẍ(x)X̃i1(x) (Xi1 − x) + hℓ+2 1

(ℓ+ 1)!
vec(Λ(ℓ+1)(x))

(
Xi1 − x

h

)ℓ+2
)

× X̃ ′
i1(x)M̂

−1(x)ι1κh(Xi1 − x) +Op(h
ℓ+3).

Let H(x) be a diagonal matrix whose ith entry is given by Xi1 − x. First, note that

N−1
∑
i

LZ̈Ẍ(x)X̃i1(x) (Xi1 − x) X̃ ′
i1(x)M̂

−1(x)ι1κh(Xi1 − x) (D.10)

= N−1LZ̈Ẍ(x)X̃′
1(x)H(x)K(x)X̃1(x)M̂

−1(x)ι1

= N−1
ℓ+1∑
s=1

[LZ̈Ẍ(x)]sι
′
sX̃

′
1(x)H(x)K(x)X̃1(x)M̂

−1(x)ι1

= N−1
ℓ∑

s=1

[LZ̈Ẍ(x)]sι
′
s+1X̃

′
1(x)K(x)X̃1(x)M̂

−1(x)ι1

+N−1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1X̃

′
1(x)H(x)K(x)X̃1(x)M̂

−1(x)ι1

= N−1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1DD−1X̃′

1(x)H(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1

= hℓ+1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1

(
M1fX1(x) + hM2f

(1)
X1

(x) + op(h)
)

×
(
f−1
X1

(x)M−1 + hcf (x)f
−1
X1

(x)M−1M1M
−1 + op(h)

)
ι1.

The third equality holds because H(x)X̃1(x)ιs = X̃(x)ιs+1 for s = 1, . . . , ℓ. The fourth

equality holds becauseN−1ι′s+1X̃
′
1(x)K(x)X̃1(x)M̂

−1(x)ι1 = ι′s+1M̂(x)−1M̂(x)ι1 = ι′s+1ι1 =

0 for all s = 1, ..., ℓ. The last equality holds from standard kernel derivations.

Further, given symmetry of the kernel function κ(.), the (i, k)-th element of M is zero

if i+k is odd. This implies that the adjoint matrix of the (1, k)-th element ofM is singular

if k is even and, therefore, M−1ι1 is a (ℓ+1)×1 vector with all even elements equal to zero.

On the other hand, ι′ℓ+1Mj = (
∫
uℓ+jκ(u)du ...

∫
u2ℓ+jκ(u)du) have zero odd elements

when ℓ+ j is odd and zero even elements if ℓ+ j is even. Therefore, ι′ℓ+1M1M
−1ι1 = 0

when ℓ is even. Using similar arguments, we know that ι′ℓ+1M1M
−1M1M

−1ι1 = 0 when

ℓ is even and ι′ℓ+1M2M
−1ι1 = 0 when ℓ is odd.

Therefore, we have

(D.10) = hℓ+1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1M1M

−1ι1 +Op(h
ℓ+2), (D.11)
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if ℓ is odd and

(D.10) = hℓ+2[LZ̈Ẍ(x)]ℓ+1cf (x)ι
′
ℓ+1M2M

−1ι1 +Op(h
ℓ+3), (D.12)

if ℓ is even. Similarly, the other component of E[N−1
∑

i b̂i1(x)|Xi1] follows

N−1
∑
i

hℓ+2 1

(ℓ+ 1)!
vec(Λ(ℓ+1)(x))

(
Xi1 − x

h

)ℓ+2

X̃ ′
i1M̂

−1(x)ι1κh(Xi1 − x)

= hℓ+2 1

(ℓ+ 1)!
vec(Λ(ℓ+1)(x))ι′ℓ+1M2M

−1ι1 +Op(h
ℓ+3),

if ℓ is even and Op(h
ℓ+3) if ℓ is odd.

For the term B̃2(x), we know that

E[N−1
∑
i

b̂i2(x)|Xi1]

=N−1
ℓ+1∑
s=1

[LZ̈Ẍ(x)]sι
′
sX̃

′
1(x)H

2(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1 +Op(h

ℓ+3)

=N−1[LZ̈Ẍ(x)]ℓι
′
ℓ+1DD−1X̃′

1(x)H(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1

+N−1[LZ̈Ẍ(x)]ℓ+1ι
′
ℓ+1DD−1X̃′

1(x)H2(x)K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
ι1

+Op(h
ℓ+3).

The first term in the RHS is not relevant for ℓ = 0. When relevant, it reduces to

hℓ+1[LZ̈Ẍ(x)]ℓι
′
ℓ+1M1M

−1ι1+Op(h
ℓ+2) when ℓ is odd and hℓ+2[LZ̈Ẍ(x)]ℓcf (x)ι

′
ℓ+1M2M

−1ι1+

Op(h
ℓ+3) when ℓ is even. The second term reduces to hℓ+2[LZ̈Ẍ(x)]ℓ+1ι

′
ℓ+1M2M

−1ι1 +

Op(h
ℓ+3) when ℓ is even and Op(h

ℓ+3) when ℓ is odd.

Using similar derivations, one can show that V[N−1
∑

i(̂bi1(x)+b̂i2(x))|Xi1] = Op(h/N) =

Op(h
4) if Nh3 → ∞ and that RB(x) = Op(h

3) under the uniform boundedness condi-

tions.

Summing up, we conclude that

B̂(x) = (θ
(1)
2 (x)⊗ IdZ̈ )

′ · h2vec(Λ(1)

Z̈Ẍ
(x))ι′2M1M

−1ι1

+ (θ
(2)
2 (x)/2⊗ IdZ̈ )

′ · h2vec(ΛZ̈Ẍ(x))ι′2M1M
−1ι1 + op(h

2)

= h2µ2

(
Λ

(1)

Z̈Ẍ
(x)θ

(1)
2 (x) +ΛZ̈Ẍ(x)θ

(2)
2 (x)/2

)
+Op(h

3),

when ℓ = 1 and

B̂(x) =h2µ2

[(
cf (x)ΛZ̈Ẍ(x) +Λ

(1)

Z̈Ẍ
(x)
)
θ
(1)
2 (x) +ΛZ̈Ẍ(x)θ

(2)
2 (x)/2

]
+Op(h

3)
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when ℓ = 0, which corresponds to the statement in the lemma.

Proof of Lemma D.2

The first part of the lemma can be proven by showing that supx
∥∥D−1M̂(x)D−1 −

E[D−1M̂(x)D−1]
∥∥ = Op(ch), while supx

∥∥E[D−1M̂(x)D−1]−MfX1(x)−hM1f
(1)
X1

(x)
∥∥ =

Op(h
2). The former follows from a trivial extension of the uniform convergence result

stated in Mack and Silverman (1982) for local constant estimation to local polynomial

estimation. The latter follows from standard kernel bias derivation and uniform bound-

edness conditions stated in the assumptions.

The second part of the lemma is obtained as a consequence of Lemma A.1 in Fan and

Huang (2005). Specifically, it can be shown by using supx∈X1
|f−1

X1
(x)| < ∞ (Assump-

tion D.1.(b)) and the fact that

sup
x∈X1

∥N−1
∑
i

ε̃i2Z̈i2X̃
′
i1(x)D

−1κh(Xi1 − x)∥ = Op(ch). (D.13)

Then, (D.5) is obtained as a consequence of (D.3) and (D.13); specifically, we have

∥Ψ̂(x)−Ψ(x)∥

≤ ∥N−1
∑
i

ε̃i2Z̈i2X̃
′
i1(x)D

−1κh(Xi1 − x)∥∥(D−1M̂(x)D−1)−1 −M−1f−1
X1

(x)∥

≤ Op(ch)∥(D−1M̂(x)D−1)−1∥∥D−1M̂(x)D−1 −MfX1(x)∥∥M−1f−1
X1

(x)∥

= Op(ch)Op(ch + h), (D.14)

uniformly in x ∈ X1. The second inequality follows from A−1 −B−1 = B−1(A−B)A−1

for matrices A and B.

To prove (D.6), we define υi = vec(Z̈i2Ẍ
′
i2 −ΛZ̈Ẍ(Xi1)) and then, given that ΛZ̈Ẍ(.)

is twice continuously differentiable, we have

vec(Λ̂Z̈Ẍ(x)−ΛZ̈Ẍ(x))

=N−1X̃′
2K(x)X̃1(x)M̂(x)−1ι1 − LZ̈Ẍ(x)N−1X̃′

1(x)K(x)X̃1(x)M̂
−1(x)ι1

=N−1(X̃2 − X̃1(x)L
′
Z̈Ẍ

(x))′K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
D−1ι1.

By (D.3) and Assumption D.1.(b) on the density function, we know that
(
D−1M̂(x)D−1

)−1
=

Op(1) uniformly in x ∈ X1. In addition, we have

N−1(X̃2 − X̃1(x)L
′
Z̈Ẍ

(x))′K(x)X̃1(x)D
−1 = r11(x) + r12(x), (D.15)

44



where r11(x) =N
−1
∑
i

υiX̃
′
i1(x)D

−1κh(Xi1 − x),

r12(x) =1{ℓ=0}N
−1h

∑
i

vec(Λ
(1)

Z̈Ẍ
(x))

(
Xi1 − x

h

)
κh(Xi1 − x)

+N−1h2
∑
i

vec(Λ
(2)

Z̈Ẍ
(ξi1))

(
Xi1 − x

h

)2

X̃ ′
i1(x)D

−1κh(Xi1 − x),

by the Taylor expansion for some ξi1 between Xi1 and x. Because E[υi|Xi1] = 0 and

supx∈X1
E[|νi∥s|Xi1 = x] < ∞, we follow the uniform convergence results in Mack and

Silverman (1982) and Fan and Huang (2005, Lemma A.1) and obtain that r11(.) = Op(ch)

uniformly on X1. Similarly,

r12(x) =h1{ℓ=0}vec(Λ
(1)

Z̈Ẍ
(x))E

[(
Xi1 − x

h

)
κh(Xi1 − x)

]
+ h2E

[(
Xi1 − x

h

)2

vec(Λ
(2)

Z̈Ẍ
(ξi1))X̃

′
i1(x)D

−1κh(Xi1 − x)

]
+Op(ch)

= h2(vec(Λ
(2)

Z̈Ẍ
(x)) + op(1))(fX1(x)ι

′
1M2 +Op(h)) +Op(ch + h2),

uniformly in x ∈ X1. The last equality follows from uniform boundedness conditions in

Assumptions D.1.(b) and D.1.(e). Then, the desired result is followed.

N−1(X̃2 − X̃1(x)L
′
Z̈Ẍ

(x))′K(x)X̃1(x)D
−1
(
D−1M̂(x)D−1

)−1
D−1ι1 = Op(ch + h2).

We then focus on (D.7). Because of (D.6) and Assumption 3.1, we have ∥Ω̂(x) −

Ω(x)∥ = Op(ch + h2) uniformly in x ∈ X1. Then, the desired result is obtained by

combining this with (D.4).

To study the last part, we recall that B̂(x) can be decomposed into B̃1(x), B̃2(x) and

RB(x), each of which is defined in the proof of Lemma D.1. We then let

N−1
∑
i

bi1(x) = N−1
∑
i

h

(
Xi1 − x

h

)
X̃i2ι

′
1M

−1D−1X̃i1(x)κh(Xi1 − x)f−1
X1

(x),

N−1
∑
i

bi2(x) = N−1
∑
i

h2
(
Xi1 − x

h

)2

X̃i2ι
′
1M

−1D−1X̃i1(x)κh(Xi1 − x)f−1
X1

(x).

Because of the uniform boundedness conditions in Assumptions D.1.(b), D.1.(c) and

D.1.(f) and the uniform convergence result in Lemma A.1 in Fan and Huang (2005), we
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find that

N−1
∑
i

(
Xi1 − x

h

)
X̃i2X̃

′
i1D

−1κh(Xi1 − x)

= vec
(
ΛZ̈Ẍ(x)

)
ι′1M1fX1(x)

+ hfX1(x)
(
cf (x)vec

(
ΛZ̈Ẍ(x)

)
ι′1M1 + vec

(
Λ

(1)

Z̈Ẍ
(x)
)
ι′1M2

)
+Op(ch + h2),

uniformly in x ∈ X1. By using similar arguments in proving (D.11) and (D.12), we have

ι′1M1M
−1ι1 = 0 and thus N−1

∑
i bi1(x) satisfies the following:

N−1
∑
i

bi1(x) = h2vec
(
Λ

(1)

Z̈Ẍ
(x)
)
ι′1M2M

−1ι1+Op(h(ch+h
2)) = Op(hch+h

2). (D.16)

Similarly, the following holds uniformly in x ∈ X1:

N−1
∑
i

(
Xi1 − x

h

)2

X̃i2X̃
′
i1D

−1κh(Xi1−x) = vec
(
ΛZ̈Ẍ(x)

)
ι′1M2fX1(x)+Op(ch+h),

from which it is deduced that

N−1
∑
i

bi2(x) = h2vec
(
ΛZ̈Ẍ(x)

)
ι′1M2M

−1ι1+Op(h
2(ch+h)) = Op(h

2ch+h
2). (D.17)

Then, the followings are deduced from Assumption D.1.(c), (D.3), (D.16), and (D.17):

B̃1(x) = (θ
(1)
1 (x)⊗ IdZ̈ )

′N−1
∑
i

bi1(x) + op(hch + h2) = Op(hch + h2), (D.18)

B̃2(x) = (θ
(2)
1 (x)/2⊗ IdZ̈ )

′N−1
∑
i

bi2(x) + op(h
2ch + h2) = Op(h

2ch + h2), (D.19)

uniformly in X1. Using similar derivations, one can show that RB(.) = op(hch + h2). By

combining these results, the last part of the lemma is obtained.

Appendix E: Proofs of Theorems and Propositions

Proof of equality (3.3)

The first equality in equation (3.3) holds because

E
[
ωt(Zit)

(
Yit −

(
β0t (x)Xit +H ′

itγ̃t(x)
))

|Xi(t−1) = x
]

=E
[
ωt(Zit)

(
εit −H ′

it(γ̃t(x)− γt(x))
)
|Xi(t−1) = x

]
=E

[
ωt(Zit)εit|Xi(t−1) = x

]
− E

[
ω(Zit)E[L[εit|Xi(t−1) = x, H̃it]|Zit, Xi(t−1) = x]|Xi(t−1) = x

]
=E

[
ωt(Zit)εit|Xi(t−1) = x

]
− E

[
ωt(Zit)E[L[εit|Xi(t−1) = x, H̃it]|Xi(t−1) = x]|Xi(t−1) = x

]
,
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where the first two equalities hold respectively from the outcome equation in (3.1) and by

the law of iterated expectations. The third equality holds because E[H̃it|Xi(t−1), Zit] =

E[H̃it|Xi(t−1)] by Assumption 3.2 while the fourth holds because E[L[εit|Xi(t−1) = x, H̃i]|Xi(t−1) =

x] = E[εit|Xi(t−1) = x] by the definition of linear projection. To see this, one just

needs to show by block matrix inversion that E[L[Y |X]] = E[Y ], where L[Y |X] =

(1 X ′)(E[(1 X ′)′(1 X ′)])−1(E[(1 X ′)′Y ]) for any scalar random variable Y and random

vector X.

The second equality in equation (3.3) is explained in the main text.

Proof of Theorem 4.1

We prove the theorem without loss of generality with an identity GMM weighting

matrix. Recall that

θ̂2(x) =
(
Λ̂Z̈Ẍ(x)′Λ̂Z̈Ẍ(x)

)−1
Λ̂Z̈Ẍ(x)′Λ̂Z̈Y (x).

Let Ω̂(x) = Λ̂Z̈Ẍ(x)
(
Λ̂Z̈Ẍ(x)′Λ̂Z̈Ẍ(x)

)−1
. Then, θ̂2(x) = Ω̂′(x)Λ̂Z̈Y (x), and θ2(x) =

Ω̂′(x)Λ̂Z̈Ẍ(x)θ2(x).

Since Λ̂Z̈Y (x) = N−1
∑

i κh(Xi1−x)Z̈i2Ẍ
′
i2θ2(Xi1)X̃

′
i1(x)M̂

−1(x)ι1+N
−1
∑

i κh(Xi1−

x)Z̈i2ε̃i2X̃
′
i1(x)M̂

−1(x)ι1. If we define Ψ̂(x) = N−1
∑

i κh(Xi1−x)Z̈i2ε̃i2X̃
′
i1(x)M̂

−1(x)ι1.

Then, the difference between θ̂2(x) and θ2(x) can be written as:

θ̂2(x)− θ2(x) = Ω̂′(x)B̂(x) + Ω̂′(x)Ψ̂(x). (E.1)

From (D.2), we have

Ω̂(x)−Ω(x) = Op((Nh)
−1/2) + op(hℓ), (E.2)

where Ω(x) = ΛZ̈Ẍ(x)
(
Λ′

Z̈Ẍ
(x)ΛZ̈Ẍ(x)

)−1
as is defined in Theorem 4.1.

Next, rewrite Ψ̂(x) as follows.

Ψ̂(x) =
(
ι′1(D

−1M̂D−1)−1 ⊗ IdZ̈

)
N−1

∑
i

ε̃i2κh(Xi1 − x)(D−1X̃i1(x)⊗ IdZ̈ )Z̈i2

≡
(
ι′1(D

−1M̂D−1)−1 ⊗ IdZ̈

)
N−1

∑
i

φi(x),
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where φi(x) is a dZ̈ × dẌ dimensional vector. Note that

(ι′1(MfX1(x))
−1 ⊗ IZ̈)V(

√
hφi(x))((MfX1(x))

−1ι1 ⊗ IZ̈)

= f−2
X1

(x)E
[
hκ2h(Xi1 − x)ι′1M

−1D−1X̃i1(x)X̃
′
i1(x)D

−1M−1ι1E[ε̃2i2Z̈i2Z̈
′
i2|Xi1]

]
= f−1

X1
(x)E[ε̃2i2Z̈i2Z̈

′
i2|Xi1 = x]ι′1M

−1MκM
−1ι1 + o(1), (E.3)

where Mκ is a (ℓ + 1) × (ℓ + 1) matrix whose (i, j)-th component is νi+j−2. Note that

ι′1M
−1MκM

−1ι1 = ν0 for both ℓ = 0, 1.

Then, because of (E.3), the convergence of D−1M̂D−1 in (D.1), the Cramér-Wold

device, the Lyapunov’s central limit theorem, and Slutsky’s theorem, we have the weak

convergence result that

√
NhΨ̂(x) →d N (0,Σ(x)) .

Together with (E.1) and (E.2), the weak convergence result of the theorem is proven.

Proof of Proposition 4.1

The pointwise consistency of Ω̂(x) has been established in (E.2). In this proof, we

focus on the consistency of Σ̂(x). Let f̂X1(x) be a consistent estimator of fX1(x). Then,

Σ̂(x) = f̂−2
X1

(x)
h

N

∑
i

ε̃2i2Z̈i2Z̈
′
i2κ

2
h(Xi1 − x) +RΣ(x)

= f−2
X1

(x)E[ε̃2i2Z̈i2Z̈
′
i2hκ

2
h(Xi1 − x) +RΣ(x) + op(1)

= f−2
X1

(x)

∫
V(ε̃i2Z̈i2|Xi1 = x+ uh)fX1(x+ uh)κ2(u)du+RΣ(x) + op(1)

= f−1
X1

(x)V(ε̃i2Z̈i2|Xi1 = x)

∫
κ2(u)du+RΣ(x) + op(1)

= Σ(x) +RΣ(x) + op(1), (E.4)

where RΣ(x) is the sum of two terms, RΣ,1(x) and RΣ,2(x), defined by

RΣ,1(x) :=
h

N

∑
i

(
Ẍ ′

i2(θ̂2(Xi1)− θ2(Xi1))
)2
Z̈i2Z̈

′
i2κ

2
h(Xi1 − x),

RΣ,2(x) :=
2h

N

∑
i

(
ε̃i2Ẍ

′
i2(θ̂2(Xi1)− θ2(Xi1))

)
Z̈i2Z̈

′
i2κ

2
h(Xi1 − x).

The second and third equalities of (E.4) are obtained from the standard arguments

on the pointwise consistency of the kernel estimator and kernel estimation derivations.
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The fourth equality is obtained from Assumptions D.1.(b) and D.1.(f). The rest of the

proof then focuses on showing that RΣ(x) is op(1).

The first remainder RΣ,1(x) is bounded above as follows.

∥RΣ,1(x)∥ ≤ 2N−1
∑
i

∥Ẍi2∥2∥Z̈i2∥2∥θ̂2(Xi1)− θ2(Xi1)∥2hκ2h(Xi1 − x)

≤ sup
x∈X1

∥θ̂2(x)− θ2(x)∥2N−1
∑
i

∥Ẍi2∥2∥Z̈i2∥2hκ2h(Xi1 − x).

Then, because of the results in (E.1), (E.2), and (D.5), and Lemma D.2, we find that

sup
x∈X1

∥θ̂2(x)− θ2(x)∥+ op(1) ≤ sup
x∈X1

∥Ω̂(x)∥ sup
x∈X1

(
∥B̂(x)∥+ ∥Ψ̂(x)∥

)
= op(1).

(E.5)

Moreover, because of the Markov’s inequality and Assumptions D.1.(a), D.1.(d), and

D.1.(f), we have that N−1
∑

i ∥Ẍi2∥2∥Z̈i2∥2hκ2h(Xi1 − x) = Op(1). Hence, by combining

these, we have uniformly in x ∈ X1

∥RΣ,1(x)∥ = op(1). (E.6)

By using similar arguments, we find that uniformly in x ∈ X1,

∥RΣ,2(x)∥ ≤ op(1)N
−1
s

∑
i:Xi1∈X1

∥ε̃i2∥∥Ẍi2∥∥Z̈i2∥2hκ2h(Xi1 − x) = op(1). (E.7)

Thus, the desired result is given from (E.2), (E.4), (E.6) and (E.7).

Proof of Theorem 4.2

Let p = E[1{Xi1∈X ∗
1 }] and p̂ = Ns/N . Unless otherwise specified, all summations in

the proof over i are with respect toXi1 ∈ X ∗
1 , while all summations over j are with respect

to the full sample, or j = 1, ..., N . Let ϑ̃2 = Ns
−1∑

i:Xi1∈X ∗
1
θ2(Xi1). We first notice that√

Ns(ϑ̂2 − ϑ2) =
√
Ns(ϑ̂2 − ϑ̃2) +

√
Ns(ϑ̃2 − ϑ2). (E.8)

For notational convenience, we for the moment let the scalar-valued random variable

ς(Xi1, Xj1) be defined as follows.

ς(Xi1, Xj1) = κh(Xj1 −Xi1)f
−1
X1

(Xi1) · X̃ ′
j1(Xi1)D

−1M−1ι1.

In our case of ℓ = 0, 1, the random variable ς(Xi1, Xj1) reduces to κh(Xi1−Xj1)f
−1
X1

(Xi1)

for any i and j, because ι′1M
−1D−1X̃j1(.) = 1 for any j.
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Then, the following holds because of results in Lemma D.2:√
Ns(ϑ̂2 − ϑ̃2) =N

−1/2
s

∑
i

(
θ̂2(Xi1)− θ2(Xi1)

)
=N−1/2

s

∑
i

(
Ω̂′(Xi1)B̂

′(Xi1) + Ω̂′(Xi1)Ψ̂
′(Xi1)

)
=N−1/2

s

∑
i

(
Ω̂′(Xi1)Ψ̂

′(Xi1)
)
+Op(

√
N(hch + h2))

=N−1/2
s

∑
i

Ω′(Xi1)Ψ(Xi1)

+N−1/2
s

∑
i

(Ω̂′(x)−Ω′(x))Ψ(x)

+N−1/2
s

∑
i

Ω̂′(Xi1)(Ψ̂(x)−Ψ(x)) +Op(
√
N(hch + h2))

=N−1/2
s

∑
i

Ω′(Xi1)Ψ(Xi1) +Op(
√
N(ch + h)2)

=N−1N−1/2
s

∑
j

∑
i

ε̃j2Ω(Xi1)
′Z̈j2ς(Xi1, Xj1) + op(1)

=N−1N−1/2
s

∑
j

∑
i ̸=j

ε̃j2Ω(Xi1)
′Z̈j2ς(Xi1, Xj1) + op(1).

The second last equality holds from
√
N(ch + h)2 = o(1) under the rate condition in

Assumption D.1 and the additional condition Nh4 = o(1) stated in the theorem. The

last equality holds because

N−1N−1/2
s

N∑
j=1

Ω′(Xj1)Z̈j2ε̃j2ς(Xj1, Xj1)

≤ sup
x∈X1

∥∥f−1
X1

(x)
∥∥ sup
x∈X1

∥∥Ω′(Xj1)
∥∥ι′1M−1ι1κh(0)N

−1N−1/2
s

N∑
j=1

Z̈j2ε̃i2 = op(1).

By letting ζ(Xj1) = N−1
s

∑
i:i ̸=j Ω

′(Xi1)ς(Xi1, Xj1), we have

√
Ns(ϑ̂2 − ϑ̃2) = (Ns/N)1/2 ·N−1/2

N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 + op(1). (E.9)

Let ζ(x) = E[ζ(x)|Xi1 ∈ X ∗
1 ] = E[Ω′(Xi1)κh(Xi1−x)f−1

X1
(Xi1)X̃j1(Xi1)

′D−1M−1ι1|Xi1 ∈

X ∗
1 ] = E[Ω′(Xi1)κh(Xi1 − x)f−1

X1
(Xi1)|Xi1 ∈ X ∗

1 ] when ℓ = 0, 1. It is easy to show that

ζ(x) = p−1
∫
X ∗

1
Ω′(t)κh(t− x)dt and therefore ζ(Xj1) = p−1

∫
X ∗

1
κh(t−Xj1)Ω

′(t)dt.

Since E[ζ(Xj1)ε̃j2Z̈j2] = 0 by the exclusion restriction, we know that E[ζ(Xj1)ε̃j2Z̈j2] =
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0 and E[(ζ(Xj1)− ζ(Xj1))ε̃j2Z̈j2] = 0 as well. In addition,

E[∥N−1/2
∑
j

(ζ(Xj1)− ζ(Xj1))ε̃j2Z̈j2∥2] ≤ E
[
∥ζ(Xj1)− ζ(Xj1)∥2E[ε̃2j2∥Z̈j2∥2|Xj1]

]
≤ O(1)E[∥ζ(Xj1)− ζ(Xj1)∥2] = O((Nh)−1). (E.10)

Then, by the Markov’s inequality, we have

N−1/2
N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 −N−1/2
N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 = op(1). (E.11)

Combining this with (E.9), we have

√
Ns(ϑ̂2 − ϑ̃2) = (Ns/N)1/2 ·N−1/2

N∑
j=1

ζ(Xj1)ε̃j2Z̈j2 + op(1). (E.12)

with E[ζ(Xj1)ε̃j2Z̈j2] = 0. In addition, when ℓ = 0, 1,

E[ζ(Xj1)ε̃
2
j2Z̈j2Z̈

′
j2ζ

′
(Xj1)]

= p−2

∫ ∫
X ∗

1

∫
X ∗

1

κh(t−Xj1)κh(t̃−Xj1)Ω
′(t)V(ε̃j2Z̈j2|Xj1)Ω(t̃)dtdt̃dFX1(Xj1)

= p−2

∫ ∫
κ(u)κ(u− s)u(u− s)′duds

×
∫
X ∗

1

Ω′(w)V(ε̃j2Z̈j2|Xj1 = w)Ω(w)dFX1(w) + o(1)

= p−1Σ∗
1 + o(1).

Moreover, we note that, because ζ(.) is uniformly bounded,

E[∥ζ(Xj1)∥2+δ∥εj2Z̈j2∥2+δ] ≤ O(1)E[∥ζ(Xj1)∥2+δ] = O(1),

and by combining it with the boundedness of the variance of ζ(Xj1)ε̃j2Z̈j2, one can show

that the Lyapunov’s condition holds. Therefore, the following is obtained by applying

the Lyapunov CLT to (E.12) and Ns/N → p;

(Ns/N)1/2 ·N−1/2
∑
j

ζ(Xj1)ε̃j2Z̈j2 →d N(0,Σ∗
1) (E.13)

In addition, because ϑ̃2 − ϑ2 = N−1
s

∑
i:Xi1∈X1

(θ2(Xi1) − ϑ2) = N−1
s

∑
i(θ2(Xi1) −

E[θ2(Xi1)|Xi1 ∈ X1]), and then by the CLT, we have√
Ns(ϑ̃2 − ϑ2) →d N(0,V[θ2(Xi1)|Xi1 ∈ X ∗

1 ])
d
= N(0,Σ∗

2). (E.14)
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Then, we have
√
Ns(ϑ̂2−ϑ2) →d N(0,Σ∗

1+Σ∗
2) that follows from (E.13) and (E.14) and

the fact that ϑ̃2 − ϑ2 is a function of Xi1 only and thus E[(ϑ̃2 − ϑ2)
′ζ(Xi1)Z̈i2ε̃i2] = 0.

Proof of Proposition 4.2

The suggested estimator of Σ∗
1 is as follows,

Σ̂∗
1 = p̂ ·N−1

∑
j

ε̂2j2ζ̂(Xj1)Z̈j2Z̈
′
j2ζ̂

′(Xj1), (E.15)

where ζ̂(x) = N−1
s

∑
i:Xi1∈X1

f̂−1
X1

(Xi1)κh(Xi1 − x)Ω̂′(Xi1) and ε̂i2 = ε̃i2 − Ẍ ′
i2(θ̂2(Xi1)−

θ2(Xi1)). Then, because of (D.3) in Lemma D.2, (E.2), and the fact that ι′1M
−1X̃j1(.)

reduces to 1 for all j the following holds uniformly in x ∈ X1:

∥ζ̂(x)− ζ(x)∥ ≤ Op(1) sup
x̃∈X ∗

1

(
|f̂−1

X1
(x̃)− f−1

X1
(x̃)|+ ∥Ω̂(x̃)−Ω(x̃)∥

)
= op(1). (E.16)

In addition, because of Lemma A.1 in Fan and Huang (2005), ζ(.) satisfies that

sup
x∈X1

∥ζ(x)− ζ(x)∥ = Op(ch), (E.17)

The uniform convergence results in (E.16) and (E.17) imply that

sup
x∈X1

∥ζ̂(x)− ζ(x)∥ = op(1). (E.18)

We for the moment define Σ̃∗
1 as follows.

Σ̃∗
1 = p̂ ·N−1

∑
j

ζ(Xj1)ε̃
2
j2Z̈j2Z̈

′
j2ζ

′
(Xj1).

Then, by the LLN for the i.i.d. data and the probability limit of p̂, we have

Σ̃∗
1 →p Σ

∗
1. (E.19)

Moreover, because of (E.5), (E.18), (E.19), Assumption D.1.(c), the uniform boundedness

of ζ(.), and N−1
∑

j ∥Ẍj2∥2∥Z̈j2∥2 = Op(1) (Assumption D.1.(f)), we find that

∥Σ̂∗
1 − Σ̃∗

1∥ ≤ Op(1) sup
x∈X1

(
∥ζ̂(x)− ζ(x)∥+ ∥θ̂2(x)− θ2(x)∥

)
= op(1). (E.20)

Therefore, the consistency of Σ̂∗
1 can be obtained from (E.19) and (E.20).

The suggested estimator of Σ∗
2 is given by

Σ̂∗
2 = N−1

s

∑
i:Xi1∈X1

(θ̂2(Xi1)− ϑ̂2)(θ̂2(Xi1)− ϑ̂2)
′. (E.21)
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Let Σ̃∗
2 be defined by

Σ̃∗
2 = N−1

s

∑
i:Xi1∈X1

(θ2(Xi1)− ϑ2)(θ2(Xi1)− ϑ2)
′, (E.22)

and then because of the LLN, it satisfies that

Σ̃∗
2 −Σ∗

2 = op(1). (E.23)

Note that θ̂2(.) − ϑ̂2 = θ̂2(.) − θ2(.) + θ2(.) − ϑ2 + ϑ2 − ϑ̂2 and because of the uniform

boundedness of θ2(.), (E.5) and Theorem 4.2, we find that

∥Σ̂∗
2 − Σ̃∗

2∥ ≤ Op(1)

(
∥ϑ̂2 − ϑ2∥+ sup

x∈X ∗
1

∥θ̂2(x)− θ2(x)∥

)
= op(1). (E.24)

Then the consistency of Σ̂∗
2 can be established by using (E.23) and (E.24).
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